Some weak covering properties and infinite games

Masami Sakai

Open Mathematics (2014)

  • Volume: 12, Issue: 2, page 322-329
  • ISSN: 2391-5455

Abstract

top
We show that (I) there is a Lindelöf space which is not weakly Menger, (II) there is a Menger space for which TWO does not have a winning strategy in the game Gfin(O,Do). These affirmatively answer questions posed in Babinkostova, Pansera and Scheepers [Babinkostova L., Pansera B.A., Scheepers M., Weak covering properties and infinite games, Topology Appl., 2012, 159(17), 3644–3657]. The result (I) automatically gives an affirmative answer of Wingers’ problem [Wingers L., Box products and Hurewicz spaces, Topology Appl., 1995, 64(1), 9–21], too. The selection principle S1(Do,Do) is also discussed in view of a special base. We show that every subspace of a hereditarily Lindelöf space with an ortho-base satisfies S1(Do,Do).

How to cite

top

Masami Sakai. "Some weak covering properties and infinite games." Open Mathematics 12.2 (2014): 322-329. <http://eudml.org/doc/269427>.

@article{MasamiSakai2014,
abstract = {We show that (I) there is a Lindelöf space which is not weakly Menger, (II) there is a Menger space for which TWO does not have a winning strategy in the game Gfin(O,Do). These affirmatively answer questions posed in Babinkostova, Pansera and Scheepers [Babinkostova L., Pansera B.A., Scheepers M., Weak covering properties and infinite games, Topology Appl., 2012, 159(17), 3644–3657]. The result (I) automatically gives an affirmative answer of Wingers’ problem [Wingers L., Box products and Hurewicz spaces, Topology Appl., 1995, 64(1), 9–21], too. The selection principle S1(Do,Do) is also discussed in view of a special base. We show that every subspace of a hereditarily Lindelöf space with an ortho-base satisfies S1(Do,Do).},
author = {Masami Sakai},
journal = {Open Mathematics},
keywords = {Game; Menger; Weakly Menger; Box product; S1(Do,Do); Ortho-base; Non-archimedean; game; weakly Menger; box product; ; ortho-base; non-Archimedean},
language = {eng},
number = {2},
pages = {322-329},
title = {Some weak covering properties and infinite games},
url = {http://eudml.org/doc/269427},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Masami Sakai
TI - Some weak covering properties and infinite games
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 322
EP - 329
AB - We show that (I) there is a Lindelöf space which is not weakly Menger, (II) there is a Menger space for which TWO does not have a winning strategy in the game Gfin(O,Do). These affirmatively answer questions posed in Babinkostova, Pansera and Scheepers [Babinkostova L., Pansera B.A., Scheepers M., Weak covering properties and infinite games, Topology Appl., 2012, 159(17), 3644–3657]. The result (I) automatically gives an affirmative answer of Wingers’ problem [Wingers L., Box products and Hurewicz spaces, Topology Appl., 1995, 64(1), 9–21], too. The selection principle S1(Do,Do) is also discussed in view of a special base. We show that every subspace of a hereditarily Lindelöf space with an ortho-base satisfies S1(Do,Do).
LA - eng
KW - Game; Menger; Weakly Menger; Box product; S1(Do,Do); Ortho-base; Non-archimedean; game; weakly Menger; box product; ; ortho-base; non-Archimedean
UR - http://eudml.org/doc/269427
ER -

References

top
  1. [1] Amirdžanov G.P., Šapirovskiĭ B.È., Everywhere-dense subsets of topological spaces, Soviet Math. Dokl., 1974, 15, 87–92 Zbl0295.54007
  2. [2] Arhangel’skiĭ A.V., On a class of spaces containing all metric and all locally bicompact spaces, Soviet Math. Dokl., 1963, 4, 1051–1055 
  3. [3] Aurichi L.F., Selectively c.c.c. spaces, Topology Appl., 2013, 160(18), 2243–2250 http://dx.doi.org/10.1016/j.topol.2013.07.021 Zbl1290.54014
  4. [4] Babinkostova L., Pansera B.A., Scheepers M., Weak covering properties and infinite games, Topology Appl., 2012, 159(17), 3644–3657 http://dx.doi.org/10.1016/j.topol.2012.09.009 Zbl1270.03091
  5. [5] Bonanzinga M., Cammaroto F., Pansera B.A., Tsaban B., Diagonalizations of dense families, preprint available at http://arxiv.org/pdf/1207.4025.pdf Zbl06269378
  6. [6] Daniels P., Pixley-Roy spaces over subsets of the reals, Topology Appl., 1988, 29(1), 93–106 http://dx.doi.org/10.1016/0166-8641(88)90061-2 
  7. [7] van Douwen E.K., The Pixley-Roy topology on spaces of subsets, In: Set-Theoretic Topology, Academic Press, New York, 1977, 111–134 Zbl0372.54006
  8. [8] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989 
  9. [9] Fuller L.B., Trees and proto-metrizable spaces, Pacific J. Math., 1983, 104(1), 55–75 http://dx.doi.org/10.2140/pjm.1983.104.55 Zbl0386.54020
  10. [10] Gillman L., Jerison M., Rings of Continuous Functions, Grad. Texts in Math., 43, Springer, New York-Heidelberg, 1976 Zbl0327.46040
  11. [11] Lutzer D.J., On Generalized Ordered Spaces, Dissertationes Math. (Rozprawy Mat.), 89, Polish Acad. Sci., Warsaw, 1971 
  12. [12] Lutzer D.J., Pixley-Roy topology, Topology Proc., 1978, 3(1), 139–158 
  13. [13] Miller A.W., Special subsets of the real line, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 201–233 
  14. [14] Nyikos P.J., Some surprising base properties in topology, In: Studies in Topology, Charlotte, March 14–16, 1974, Academic Press, New York, 1975, 427–450 
  15. [15] Qiao Y.-Q., Tall F.D., Perfectly normal non-metrizable non-Archimedean spaces are generalized Souslin lines, Proc. Amer. Math. Soc., 2003, 131(12), 3929–3936 http://dx.doi.org/10.1090/S0002-9939-03-06966-1 Zbl1037.54021
  16. [16] Sakai M., Cardinal functions of spaces with ortho-bases, Tsukuba J. Math., 1985, 9(3), 167–169 Zbl0574.54001
  17. [17] Šapirovskiĭ B., The separability and metrizability of spaces with the Suslin condition, Soviet Math. Dokl., 1972, 13, 1633–1638 
  18. [18] Scheepers M., Combinatorics of open covers I: Ramsey theory, Topology Appl., 1996, 69(1), 31–62 http://dx.doi.org/10.1016/0166-8641(95)00067-4 
  19. [19] Scheepers M., Combinatorics of open covers (V): Pixley-Roy spaces of sets of reals, and ω-covers, Topology Appl., 2000, 102(1), 13–31 http://dx.doi.org/10.1016/S0166-8641(98)00141-2 Zbl0960.91018
  20. [20] Telgársky R., On games of Topsøe, Math. Scand., 1984, 54(1), 170–176 Zbl0525.54016
  21. [21] Wingers L., Box products and Hurewicz spaces, Topology Appl., 1995, 64(1), 9–21 http://dx.doi.org/10.1016/0166-8641(94)00080-M 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.