A parameter-free stabilized finite element method for scalar advection-diffusion problems
Open Mathematics (2013)
- Volume: 11, Issue: 8, page 1458-1477
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPavel Bochev, and Kara Peterson. "A parameter-free stabilized finite element method for scalar advection-diffusion problems." Open Mathematics 11.8 (2013): 1458-1477. <http://eudml.org/doc/269431>.
@article{PavelBochev2013,
abstract = {We formulate and study numerically a new, parameter-free stabilized finite element method for advection-diffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solving simplified one-dimensional versions of the governing equations on the edges. Then we use H(curl)-conforming edge elements to expand the resulting edge fluxes into an exponentially fitted flux field inside each element. Substitution of the nodal flux by this new flux completes the formulation of the method. Utilization of edge elements to define the numerical flux and the lack of stabilization parameters differentiate our approach from other stabilized methods. Numerical studies with representative advection-diffusion test problems confirm the excellent stability and robustness of the new method. In particular, the results show minimal overshoots and undershoots for both internal and boundary layers on uniform and non-uniform grids.},
author = {Pavel Bochev, Kara Peterson},
journal = {Open Mathematics},
keywords = {Advection-diffusion; Upwind stabilization; Exponentially fitted flux; Finite element method; Edge elements; advection-diffusion; upwind stabilization; exponentially fitted flux; finite element method; edge elements; numerical examples; boundary layers},
language = {eng},
number = {8},
pages = {1458-1477},
title = {A parameter-free stabilized finite element method for scalar advection-diffusion problems},
url = {http://eudml.org/doc/269431},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Pavel Bochev
AU - Kara Peterson
TI - A parameter-free stabilized finite element method for scalar advection-diffusion problems
JO - Open Mathematics
PY - 2013
VL - 11
IS - 8
SP - 1458
EP - 1477
AB - We formulate and study numerically a new, parameter-free stabilized finite element method for advection-diffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solving simplified one-dimensional versions of the governing equations on the edges. Then we use H(curl)-conforming edge elements to expand the resulting edge fluxes into an exponentially fitted flux field inside each element. Substitution of the nodal flux by this new flux completes the formulation of the method. Utilization of edge elements to define the numerical flux and the lack of stabilization parameters differentiate our approach from other stabilized methods. Numerical studies with representative advection-diffusion test problems confirm the excellent stability and robustness of the new method. In particular, the results show minimal overshoots and undershoots for both internal and boundary layers on uniform and non-uniform grids.
LA - eng
KW - Advection-diffusion; Upwind stabilization; Exponentially fitted flux; Finite element method; Edge elements; advection-diffusion; upwind stabilization; exponentially fitted flux; finite element method; edge elements; numerical examples; boundary layers
UR - http://eudml.org/doc/269431
ER -
References
top- [1] Angermann L., Wang S., Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations, Appl. Numer. Math., 2003, 46(1), 19–43 http://dx.doi.org/10.1016/S0168-9274(02)00224-6 Zbl1028.82024
- [2] Arnold D.N., Falk R.S., Winther R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 2006, 15, 1–155 http://dx.doi.org/10.1017/S0962492906210018 Zbl1185.65204
- [3] Badia S., Codina R., Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework, SIAM J. Numer. Anal., 2006, 44(5), 2159–2197 http://dx.doi.org/10.1137/050643532 Zbl1126.65079
- [4] Bochev P.B., Hyman J.M., Principles of mimetic discretizations of differential operators, In: Compatible Spatial Discretizations, Minneapolis, May 11–15, 2004, IMA Vol. Math. Appl., 142, Springer, New York, 2006, 89–119 Zbl1110.65103
- [5] Brezzi F., Bristeau M.O., Franca L.P., Mallet M., Rogé G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 1992, 96(1), 117–129 http://dx.doi.org/10.1016/0045-7825(92)90102-P Zbl0756.76044
- [6] Brooks A.N., Hughes T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, In: FENOMECH’ 81, I, Stuttgart, August 25–28, 1981, Comput. Methods Appl. Mech. Engrg., 1982, 32(1–3), 199–259
- [7] Codina R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 1998, 156(1–4), 185–210 http://dx.doi.org/10.1016/S0045-7825(97)00206-5 Zbl0959.76040
- [8] Elman H.C., Silvester D.J., Wathen A.J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University Press, New York, 2005 Zbl1083.76001
- [9] Franca L.P., Farhat C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 1995, 123(1–4), 299–308 http://dx.doi.org/10.1016/0045-7825(94)00721-X Zbl1067.76567
- [10] Franca L.P., Frey S.L., Hughes T.J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 1992, 95(2), 253–276 http://dx.doi.org/10.1016/0045-7825(92)90143-8 Zbl0759.76040
- [11] Franca L.P., Russo A., Recovering SUPG using Petrov-Galerkin formulations enriched with adjoint residual free bubbles, In: IV WCCM, Buenos Aires, June 29–July 2, 1998, Comput. Methods Appl. Mech. Engrg., 2000, 182(3–4), 333–339 Zbl0977.76044
- [12] Harari I., Hughes T.J.R., What are C and h?: Inequalities for the analysis and design of finite element methods, Comput. Methods Appl. Mech. Engrg., 1992, 97(2), 157–192 http://dx.doi.org/10.1016/0045-7825(92)90162-D Zbl0764.73083
- [13] Hughes T.J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 1995, 127(1–4), 387–401 http://dx.doi.org/10.1016/0045-7825(95)00844-9 Zbl0866.76044
- [14] Hughes T.J.R., Brooks A., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, In: Finite Elements in Fluids, 4, Banff, June 10–13, 1980, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1982, 47–65
- [15] Hughes T.J.R., Mallet M., Mizukami A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 1986, 54(3), 341–355 http://dx.doi.org/10.1016/0045-7825(86)90110-6 Zbl0622.76074
- [16] John V., Schmeyer E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Engrg., 2008, 198(3–4), 475–494 http://dx.doi.org/10.1016/j.cma.2008.08.016 Zbl1228.76088
- [17] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987 Zbl0628.65098
- [18] Knobloch P., On the definition of the SUPG parameter, Electron. Trans. Numer. Anal., 2008, 32, 76–89 Zbl1171.65079
- [19] Martinez M.J., Comparison of Galerkin and control volume finite element for advection-diffusion problems, Internat. J. Numer. Methods Fluids, 2006, 50(3), 347–376 http://dx.doi.org/10.1002/fld.1060 Zbl1086.65095
- [20] Nédélec J.-C., Mixed finite elements in ℝ3, Numer. Math., 1980, 35(3), 315–341 http://dx.doi.org/10.1007/BF01396415
- [21] Sacco R., Exponentially fitted shape functions for advection-dominated flow problems in two dimensions, J. Comput. Appl. Math., 1996, 67(1), 161–165 http://dx.doi.org/10.1016/0377-0427(95)00149-2 Zbl0854.76054
- [22] Scharfetter D.L., Gummel H.K., Large-signal analysis of a silicon Read diode oscillator, IEEE Transactions on Electron Devices, 1969, 16(1), 64–77 http://dx.doi.org/10.1109/T-ED.1969.16566
- [23] Turner D.Z., Nakshatrala K.B., Hjelmstad K.D., A stabilized formulation for the advection-diffusion equation using the generalized finite element method, Internat. J. Numer. Methods Fluids, 2011, 66(1), 64–81 http://dx.doi.org/10.1002/fld.2248 Zbl05881770
- [24] Wang S., A novel exponentially fitted triangular finite element method for an advection-diffusion problem with boundary layers, J. Comput. Phys., 1997, 134(2), 253–260 http://dx.doi.org/10.1006/jcph.1997.5691
- [25] Wang S., A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices, M2AN Math. Model. Numer. Anal., 1999, 33(1), 99–112 http://dx.doi.org/10.1051/m2an:1999107 Zbl0961.82030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.