Statistical approximation properties of q-Baskakov-Kantorovich operators

Vijay Gupta; Cristina Radu

Open Mathematics (2009)

  • Volume: 7, Issue: 4, page 809-818
  • ISSN: 2391-5455

Abstract

top
In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.

How to cite

top

Vijay Gupta, and Cristina Radu. "Statistical approximation properties of q-Baskakov-Kantorovich operators." Open Mathematics 7.4 (2009): 809-818. <http://eudml.org/doc/269433>.

@article{VijayGupta2009,
abstract = {In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.},
author = {Vijay Gupta, Cristina Radu},
journal = {Open Mathematics},
keywords = {q-integers; q-Baskakov operators; q-Baskakov-Kantorovich operators; Weighted space; Weighted modulus of smoothness; -integers; -Baskakov operators; -Baskakov-Kantorovich operators; weighted space; weighted modulus of smoothness},
language = {eng},
number = {4},
pages = {809-818},
title = {Statistical approximation properties of q-Baskakov-Kantorovich operators},
url = {http://eudml.org/doc/269433},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Vijay Gupta
AU - Cristina Radu
TI - Statistical approximation properties of q-Baskakov-Kantorovich operators
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 809
EP - 818
AB - In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.
LA - eng
KW - q-integers; q-Baskakov operators; q-Baskakov-Kantorovich operators; Weighted space; Weighted modulus of smoothness; -integers; -Baskakov operators; -Baskakov-Kantorovich operators; weighted space; weighted modulus of smoothness
UR - http://eudml.org/doc/269433
ER -

References

top
  1. [1] Abel U., Gupta V., An estimate of the rate of convergence of a Bezier variant of the Baskakov-Kantorovich operators for bounded variation functions, Demonstratio Math., 2003, 36, 123–136 Zbl1028.41016
  2. [2] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 2009, 13, 735–743 http://dx.doi.org/10.1007/s11117-008-3002-4[WoS][Crossref] Zbl1179.41023
  3. [3] Andrews G.E., Askey R., Roy R., Special functions, Cambridge Univ. Press., 1999 Zbl0920.33001
  4. [4] Aral A., Gupta V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Anal., (in press), DOI: 10.1016/j.na.2009.07.052 [Crossref] Zbl1180.41012
  5. [5] Baskakov V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 1957, 113, 249–251 (in Russian) Zbl0080.05201
  6. [6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo Serie II, 2005, 76, 269–290 Zbl1142.41002
  7. [7] Doǧru O., Duman O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen, 2006, 68, 199–214 Zbl1097.41004
  8. [8] Dogru O., Duman O., Orhan C., Statistical approximation by generalized Meyer-König and Zeller type operators, Studia Sci. Math. Hungar., 2003, 40, 359–371 Zbl1065.41040
  9. [9] Dogru O., Gupta V., Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Math. J., 2005, 12, 415–422 Zbl1092.41008
  10. [10] Doǧru O., Gupta V., Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators, Calcolo, 2006, 43, 51–63 http://dx.doi.org/10.1007/s10092-006-0114-8[Crossref] Zbl1121.41020
  11. [11] Duman O., Orhan C., Statistical approximation by positive linear operators, Studia Math., 2006, 161, 187–197 http://dx.doi.org/10.4064/sm161-2-6[Crossref] Zbl1049.41016
  12. [12] Ernst T., The history of q-calculus and a new method, U.U.D.M. Report 2000, 16, Uppsala, Departament of Mathematics, Uppsala University, 2000 
  13. [13] Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 2008, 197, 172–178 http://dx.doi.org/10.1016/j.amc.2007.07.056[Crossref][WoS] 
  14. [14] Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002 Zbl0986.05001
  15. [15] López-Moreno A.-J., Weighted silmultaneous approximation with Baskakov type operators, Acta Math. Hungar., 2004, 104, 143–151 http://dx.doi.org/10.1023/B:AMHU.0000034368.81211.23[Crossref] Zbl1091.41023
  16. [16] Lorentz G.G., Bernstein polynomials, Math. Expo. Vol. 8, Univ. of Toronto Press, Toronto, 1953 
  17. [17] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 Zbl0881.41008
  18. [18] Radu C., Statistical approximation properties of Kantorovich operators based on q-integers, Creat. Math. Inform., 2008, 17, 75–84 Zbl1199.41138
  19. [19] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx., 2000, 29, 221–229 Zbl1023.41022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.