Statistical approximation properties of q-Baskakov-Kantorovich operators
Open Mathematics (2009)
- Volume: 7, Issue: 4, page 809-818
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topVijay Gupta, and Cristina Radu. "Statistical approximation properties of q-Baskakov-Kantorovich operators." Open Mathematics 7.4 (2009): 809-818. <http://eudml.org/doc/269433>.
@article{VijayGupta2009,
abstract = {In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.},
author = {Vijay Gupta, Cristina Radu},
journal = {Open Mathematics},
keywords = {q-integers; q-Baskakov operators; q-Baskakov-Kantorovich operators; Weighted space; Weighted modulus of smoothness; -integers; -Baskakov operators; -Baskakov-Kantorovich operators; weighted space; weighted modulus of smoothness},
language = {eng},
number = {4},
pages = {809-818},
title = {Statistical approximation properties of q-Baskakov-Kantorovich operators},
url = {http://eudml.org/doc/269433},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Vijay Gupta
AU - Cristina Radu
TI - Statistical approximation properties of q-Baskakov-Kantorovich operators
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 809
EP - 818
AB - In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.
LA - eng
KW - q-integers; q-Baskakov operators; q-Baskakov-Kantorovich operators; Weighted space; Weighted modulus of smoothness; -integers; -Baskakov operators; -Baskakov-Kantorovich operators; weighted space; weighted modulus of smoothness
UR - http://eudml.org/doc/269433
ER -
References
top- [1] Abel U., Gupta V., An estimate of the rate of convergence of a Bezier variant of the Baskakov-Kantorovich operators for bounded variation functions, Demonstratio Math., 2003, 36, 123–136 Zbl1028.41016
- [2] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 2009, 13, 735–743 http://dx.doi.org/10.1007/s11117-008-3002-4[WoS][Crossref] Zbl1179.41023
- [3] Andrews G.E., Askey R., Roy R., Special functions, Cambridge Univ. Press., 1999 Zbl0920.33001
- [4] Aral A., Gupta V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Anal., (in press), DOI: 10.1016/j.na.2009.07.052 [Crossref] Zbl1180.41012
- [5] Baskakov V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 1957, 113, 249–251 (in Russian) Zbl0080.05201
- [6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo Serie II, 2005, 76, 269–290 Zbl1142.41002
- [7] Doǧru O., Duman O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen, 2006, 68, 199–214 Zbl1097.41004
- [8] Dogru O., Duman O., Orhan C., Statistical approximation by generalized Meyer-König and Zeller type operators, Studia Sci. Math. Hungar., 2003, 40, 359–371 Zbl1065.41040
- [9] Dogru O., Gupta V., Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Math. J., 2005, 12, 415–422 Zbl1092.41008
- [10] Doǧru O., Gupta V., Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators, Calcolo, 2006, 43, 51–63 http://dx.doi.org/10.1007/s10092-006-0114-8[Crossref] Zbl1121.41020
- [11] Duman O., Orhan C., Statistical approximation by positive linear operators, Studia Math., 2006, 161, 187–197 http://dx.doi.org/10.4064/sm161-2-6[Crossref] Zbl1049.41016
- [12] Ernst T., The history of q-calculus and a new method, U.U.D.M. Report 2000, 16, Uppsala, Departament of Mathematics, Uppsala University, 2000
- [13] Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 2008, 197, 172–178 http://dx.doi.org/10.1016/j.amc.2007.07.056[Crossref][WoS]
- [14] Kac V., Cheung P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002 Zbl0986.05001
- [15] López-Moreno A.-J., Weighted silmultaneous approximation with Baskakov type operators, Acta Math. Hungar., 2004, 104, 143–151 http://dx.doi.org/10.1023/B:AMHU.0000034368.81211.23[Crossref] Zbl1091.41023
- [16] Lorentz G.G., Bernstein polynomials, Math. Expo. Vol. 8, Univ. of Toronto Press, Toronto, 1953
- [17] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 Zbl0881.41008
- [18] Radu C., Statistical approximation properties of Kantorovich operators based on q-integers, Creat. Math. Inform., 2008, 17, 75–84 Zbl1199.41138
- [19] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx., 2000, 29, 221–229 Zbl1023.41022
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.