Character formulae for classical groups

Péter Frenkel

Open Mathematics (2006)

  • Volume: 4, Issue: 2, page 242-249
  • ISSN: 2391-5455

Abstract

top
We give formulae relating the value Xλ (g) of an irreducible character of a classical group G to entries of powers of the matrix g ε G. This yields a far-reaching generalization of a result of J.L. Cisneros-Molina concerning the GL 2 case [1].

How to cite

top

Péter Frenkel. "Character formulae for classical groups." Open Mathematics 4.2 (2006): 242-249. <http://eudml.org/doc/269435>.

@article{PéterFrenkel2006,
abstract = {We give formulae relating the value Xλ (g) of an irreducible character of a classical group G to entries of powers of the matrix g ε G. This yields a far-reaching generalization of a result of J.L. Cisneros-Molina concerning the GL 2 case [1].},
author = {Péter Frenkel},
journal = {Open Mathematics},
keywords = {20G05},
language = {eng},
number = {2},
pages = {242-249},
title = {Character formulae for classical groups},
url = {http://eudml.org/doc/269435},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Péter Frenkel
TI - Character formulae for classical groups
JO - Open Mathematics
PY - 2006
VL - 4
IS - 2
SP - 242
EP - 249
AB - We give formulae relating the value Xλ (g) of an irreducible character of a classical group G to entries of powers of the matrix g ε G. This yields a far-reaching generalization of a result of J.L. Cisneros-Molina concerning the GL 2 case [1].
LA - eng
KW - 20G05
UR - http://eudml.org/doc/269435
ER -

References

top
  1. [1] J. L. Cisneros-Molina: “An invariant of 2 × 2 matrices”, Electr. J. Linear Algebra, Vol. 13, (2005), pp. 146–152. Zbl1104.15023
  2. [2] W. Fulton and J. Harris: Representation theory, GTM, Springer, New York, 1991. 
  3. [3] R. Goodman and N.R. Wallach: Representations and invariants of the classical groups, Cambridge University Press, Cambridge, 1998. Zbl0901.22001
  4. [4] H. Weyl: “Theorie der Darstellung kontinuerlicher halbeinfacher Gruppen durch lineare Transformationen, I, II, III, und Nachtrag”, Math. Zeitschrift, Vol. 23, (1925), pp. 271–309; Vol. 24, (1925), pp. 328–376, 377–395, 789–791; reprinted in Selecta Hermann Weyl, Birkhäuser, Basel, 1956, pp. 262–366 http://dx.doi.org/10.1007/BF01506234 
  5. [5] H. Weyl: The classical groups, Their invariants and representations, Princeton University Press, Princeton, 1946. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.