Holomorphic triples of genus 0

Stefano Pasotti; Francesco Prantil

Open Mathematics (2008)

  • Volume: 6, Issue: 1, page 129-142
  • ISSN: 2391-5455

Abstract

top
Here we study the relationship between the stability of coherent systems and the stability of holomorphic triples over a curve of arbitrary genus. Moreover we apply these results to study some properties and give some examples of holomorphic triples on the projective line.

How to cite

top

Stefano Pasotti, and Francesco Prantil. "Holomorphic triples of genus 0." Open Mathematics 6.1 (2008): 129-142. <http://eudml.org/doc/269439>.

@article{StefanoPasotti2008,
abstract = {Here we study the relationship between the stability of coherent systems and the stability of holomorphic triples over a curve of arbitrary genus. Moreover we apply these results to study some properties and give some examples of holomorphic triples on the projective line.},
author = {Stefano Pasotti, Francesco Prantil},
journal = {Open Mathematics},
keywords = {Holomorphic triples; coherent systems; vector bundles; projective line; epistability; coherent system; stable vector bundle; vector bundles on curves},
language = {eng},
number = {1},
pages = {129-142},
title = {Holomorphic triples of genus 0},
url = {http://eudml.org/doc/269439},
volume = {6},
year = {2008},
}

TY - JOUR
AU - Stefano Pasotti
AU - Francesco Prantil
TI - Holomorphic triples of genus 0
JO - Open Mathematics
PY - 2008
VL - 6
IS - 1
SP - 129
EP - 142
AB - Here we study the relationship between the stability of coherent systems and the stability of holomorphic triples over a curve of arbitrary genus. Moreover we apply these results to study some properties and give some examples of holomorphic triples on the projective line.
LA - eng
KW - Holomorphic triples; coherent systems; vector bundles; projective line; epistability; coherent system; stable vector bundle; vector bundles on curves
UR - http://eudml.org/doc/269439
ER -

References

top
  1. [1] Bradlow S.B., Daskalopoulos G.D., García-Prada O., Wentworth R., Stable augmented bundles over Riemann surfaces, Vector bundles in algebraic geometry (Durham 1993), London Math. Soc. Lecture Notes Ser., 1995, 208, 15–67 Zbl0827.14010
  2. [2] Bradlow S.B., García-Prada O., An application of coherent systems to a Brill-Noether problem, J. Reine Angew. Math., 2002, 551, 123–143 Zbl1014.14012
  3. [3] Bradlow S.B., García-Prada O., Stable triples equivariant bundles and dimensional reduction, Math. Ann., 1996, 304, 225–252 http://dx.doi.org/10.1007/BF01446292 Zbl0852.32016
  4. [4] Bradlow S.B., García-Prada O., Gothen P.B., Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann., 2004, 328, 299–351 http://dx.doi.org/10.1007/s00208-003-0484-z Zbl1041.32008
  5. [5] Bradlow S.B., García-Prada O., Gothen P.B., Homotopy groups of moduli spaces of representations, preprint available at http://arxiv.org/abs/math/0506444 v2 Zbl1165.14028
  6. [6] Bradlow S.B., García-Prada O., Mercat V., Muñoz V., Newstead P.E., On the geometry of moduli spaces of coherent systems on algebraic curves, preprint available at http://arxiv.org/abs/math/0407523 v5 Zbl1117.14034
  7. [7] Bradlow S.B., García-Prada O., Munoz V., Newstead P.E., Coherent systems and Brill-Noether theory, Internat. J. Math., 2003, 14, 683–733 http://dx.doi.org/10.1142/S0129167X03002009 Zbl1057.14041
  8. [8] Grothendieck A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 1957, 79, 121–138 (in French) http://dx.doi.org/10.2307/2372388 Zbl0079.17001
  9. [9] Lange H., Newstead P.E., Coherent systems on elliptic curves, Internat. J. Math., 2005, 16, 787–805 http://dx.doi.org/10.1142/S0129167X05003090 Zbl1078.14045
  10. [10] Lange H., Newstead P.E., Coherent systems of genus 0, Internat. J. Math., 2004, 15, 409–424 http://dx.doi.org/10.1142/S0129167X04002326 Zbl1072.14039
  11. [11] Lange H., Newstead P.E., Coherent systems of genus 0 II Existence results for k ≥ 3, Internat. J. Math., 2007, 18, 363–393 http://dx.doi.org/10.1142/S0129167X07004072 Zbl1114.14022
  12. [12] Pasotti S., Prantil F., Holomorphic triples on elliptic curves, Results Math., 2007, 50, 227–239 http://dx.doi.org/10.1007/s00025-007-0248-2 
  13. [13] Schmitt A., A universal construction for the moduli spaces of decorated vector bundles, Habilitationsschrift, University of Essen, 2000 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.