Nonlinear exponential twists of the Liouville function

Qingfeng Sun

Open Mathematics (2011)

  • Volume: 9, Issue: 2, page 328-337
  • ISSN: 2391-5455

Abstract

top
Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum X n 2 X λ ( n ) e 2 π i α n , 0 α The main tool we use is Vaughan’s identity for λ(n).

How to cite

top

Qingfeng Sun. "Nonlinear exponential twists of the Liouville function." Open Mathematics 9.2 (2011): 328-337. <http://eudml.org/doc/269447>.

@article{QingfengSun2011,
abstract = {Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum \[ \sum \limits \_\{X \leqslant n \leqslant 2X\} \{\lambda (n)e^\{2\pi i\alpha \sqrt\{n\} \} \} ,0 \ne \alpha \in \mathbb \{R\} \] The main tool we use is Vaughan’s identity for λ(n).},
author = {Qingfeng Sun},
journal = {Open Mathematics},
keywords = {Liouville function; Nonlinear exponential sums; Vaughan’s identity; nonlinear exponential sums; Vaughan's identity},
language = {eng},
number = {2},
pages = {328-337},
title = {Nonlinear exponential twists of the Liouville function},
url = {http://eudml.org/doc/269447},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Qingfeng Sun
TI - Nonlinear exponential twists of the Liouville function
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 328
EP - 337
AB - Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum \[ \sum \limits _{X \leqslant n \leqslant 2X} {\lambda (n)e^{2\pi i\alpha \sqrt{n} } } ,0 \ne \alpha \in \mathbb {R} \] The main tool we use is Vaughan’s identity for λ(n).
LA - eng
KW - Liouville function; Nonlinear exponential sums; Vaughan’s identity; nonlinear exponential sums; Vaughan's identity
UR - http://eudml.org/doc/269447
ER -

References

top
  1. [1] Davenport H., Multiplicative Number Theory, 2nd ed., Grad. Texts in Math., 74, Springer, New York-Berlin, 1980 Zbl0453.10002
  2. [2] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 Zbl1059.11001
  3. [3] Iwaniec H., Luo W., Sarnak P., Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math., 2000, 91, 55–131 http://dx.doi.org/10.1007/BF02698741 Zbl1012.11041
  4. [4] Murty M.R., Sankaranarayanan A., Averages of exponential twists of the Liouville function, Forum Math., 2002, 14(2), 273–291 http://dx.doi.org/10.1515/form.2002.012 Zbl1012.11076
  5. [5] Pi Q.H., Sun Q.F., Oscillations of cusp form coefficients in exponential sums, Ramanujan J., 2010, 21(1), 53–64 http://dx.doi.org/10.1007/s11139-008-9151-z Zbl1245.11057
  6. [6] Ren X.M., Vinogradov’s exponential sums over primes, Acta Arith., 2006, 124(3), 269–285 http://dx.doi.org/10.4064/aa124-3-5 
  7. [7] Sun Q.F., On cusp form coefficients in nonlinear exponential sums, Q. J. Math., 2010, 61(3), 363–372 http://dx.doi.org/10.1093/qmath/hap008 Zbl1245.11059
  8. [8] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, 2nd ed., University Press, New York, 1986 Zbl0601.10026
  9. [9] Vinogradov I.M., Special Variants of the Method of Trigonometric Sums, Nauka, Moscow, 1976 (in Russian), English translation in: Vinogradov I.M., Selected Works, Springer, Berlin, 1985 Zbl0429.10023
  10. [10] Zhao L.Y., Oscillations of Hecke eigenvalues at shifted primes, Rev. Mat. Iberoam., 2006, 22(1), 323–337 Zbl1170.11024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.