Nonlinear exponential twists of the Liouville function
Open Mathematics (2011)
- Volume: 9, Issue: 2, page 328-337
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topQingfeng Sun. "Nonlinear exponential twists of the Liouville function." Open Mathematics 9.2 (2011): 328-337. <http://eudml.org/doc/269447>.
@article{QingfengSun2011,
abstract = {Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum \[ \sum \limits \_\{X \leqslant n \leqslant 2X\} \{\lambda (n)e^\{2\pi i\alpha \sqrt\{n\} \} \} ,0 \ne \alpha \in \mathbb \{R\} \]
The main tool we use is Vaughan’s identity for λ(n).},
author = {Qingfeng Sun},
journal = {Open Mathematics},
keywords = {Liouville function; Nonlinear exponential sums; Vaughan’s identity; nonlinear exponential sums; Vaughan's identity},
language = {eng},
number = {2},
pages = {328-337},
title = {Nonlinear exponential twists of the Liouville function},
url = {http://eudml.org/doc/269447},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Qingfeng Sun
TI - Nonlinear exponential twists of the Liouville function
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 328
EP - 337
AB - Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum \[ \sum \limits _{X \leqslant n \leqslant 2X} {\lambda (n)e^{2\pi i\alpha \sqrt{n} } } ,0 \ne \alpha \in \mathbb {R} \]
The main tool we use is Vaughan’s identity for λ(n).
LA - eng
KW - Liouville function; Nonlinear exponential sums; Vaughan’s identity; nonlinear exponential sums; Vaughan's identity
UR - http://eudml.org/doc/269447
ER -
References
top- [1] Davenport H., Multiplicative Number Theory, 2nd ed., Grad. Texts in Math., 74, Springer, New York-Berlin, 1980 Zbl0453.10002
- [2] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 Zbl1059.11001
- [3] Iwaniec H., Luo W., Sarnak P., Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math., 2000, 91, 55–131 http://dx.doi.org/10.1007/BF02698741 Zbl1012.11041
- [4] Murty M.R., Sankaranarayanan A., Averages of exponential twists of the Liouville function, Forum Math., 2002, 14(2), 273–291 http://dx.doi.org/10.1515/form.2002.012 Zbl1012.11076
- [5] Pi Q.H., Sun Q.F., Oscillations of cusp form coefficients in exponential sums, Ramanujan J., 2010, 21(1), 53–64 http://dx.doi.org/10.1007/s11139-008-9151-z Zbl1245.11057
- [6] Ren X.M., Vinogradov’s exponential sums over primes, Acta Arith., 2006, 124(3), 269–285 http://dx.doi.org/10.4064/aa124-3-5
- [7] Sun Q.F., On cusp form coefficients in nonlinear exponential sums, Q. J. Math., 2010, 61(3), 363–372 http://dx.doi.org/10.1093/qmath/hap008 Zbl1245.11059
- [8] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, 2nd ed., University Press, New York, 1986 Zbl0601.10026
- [9] Vinogradov I.M., Special Variants of the Method of Trigonometric Sums, Nauka, Moscow, 1976 (in Russian), English translation in: Vinogradov I.M., Selected Works, Springer, Berlin, 1985 Zbl0429.10023
- [10] Zhao L.Y., Oscillations of Hecke eigenvalues at shifted primes, Rev. Mat. Iberoam., 2006, 22(1), 323–337 Zbl1170.11024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.