# Galois realizability of groups of order 64

Open Mathematics (2010)

- Volume: 8, Issue: 5, page 846-854
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topHelen Grundman, and Tara Smith. "Galois realizability of groups of order 64." Open Mathematics 8.5 (2010): 846-854. <http://eudml.org/doc/269453>.

@article{HelenGrundman2010,

abstract = {This article examines the realizability of groups of order 64 as Galois groups over arbitrary fields. Specifically, we provide necessary and sufficient conditions for the realizability of 134 of the 200 noncyclic groups of order 64 that are not direct products of smaller groups.},

author = {Helen Grundman, Tara Smith},

journal = {Open Mathematics},

keywords = {Inverse Galois theory; 2-groups; inverse Galois theory; obstructions; embedding problem; quaternion algebra},

language = {eng},

number = {5},

pages = {846-854},

title = {Galois realizability of groups of order 64},

url = {http://eudml.org/doc/269453},

volume = {8},

year = {2010},

}

TY - JOUR

AU - Helen Grundman

AU - Tara Smith

TI - Galois realizability of groups of order 64

JO - Open Mathematics

PY - 2010

VL - 8

IS - 5

SP - 846

EP - 854

AB - This article examines the realizability of groups of order 64 as Galois groups over arbitrary fields. Specifically, we provide necessary and sufficient conditions for the realizability of 134 of the 200 noncyclic groups of order 64 that are not direct products of smaller groups.

LA - eng

KW - Inverse Galois theory; 2-groups; inverse Galois theory; obstructions; embedding problem; quaternion algebra

UR - http://eudml.org/doc/269453

ER -

## References

top- [1] Carlson J., The mod-2 cohomology of 2-groups, Tables of 2-groups, available at http://web.archive.org/web/20080113051203/http://www.math.uga.edu/lvalero/cohointro.html
- [2] Gao W., Leep D.B., Mináč J., Smith T.L., Galois groups over nonrigid fields, In: Valuation Theory and its Applications, Vol. II, Fields Inst. Commun., 33, AMS, Providence, 2003, 61–77 Zbl1049.12004
- [3] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.9, 2006, http://www.gap-system.org
- [4] Grundman H.G., Smith T.L., Galois realizability of acentral C 4-extension of D 8, J. Algebra, 2009, 322(10), 3492–3498 http://dx.doi.org/10.1016/j.jalgebra.2009.08.015 Zbl1222.12007
- [5] Grundman H.G., Smith T.L., Realizability and automatic realizability of Galois groups of order 32, Cent. Eur. J. Math., 2010, 8(2), 244–260 http://dx.doi.org/10.2478/s11533-009-0072-x Zbl1256.12002
- [6] Grundman H.G., Smith T.L., Swallow J.R., Groups of order 16 as Galois groups, Exposition. Math., 1995, 13(4), 289–319 Zbl0838.12004
- [7] Grundman H.G., Stewart G., Galois realizability of non-split group extensions of C 2 by (C 2)r × (C 4)s × (D4)t, J. Algebra, 2004, 272(2), 425–434 http://dx.doi.org/10.1016/j.jalgebra.2003.09.017 Zbl1043.12004
- [8] Hall M., Jr., Senior J.K., The Groups of Order 2n (n ≤ 6), Macmillan, NewYork, 1964
- [9] Ishkhanov V.V., Lur’e B.B., Faddeev D.K., The Embedding Problem in Galois Theory, Translations of Mathematical Monographs, 165, AMS, Providence, 1997
- [10] Ledet A., On 2-groups as Galois groups, Canad. J. Math., 1995, 47(6), 1253–1273 Zbl0849.12006
- [11] Michailov I.M., Groups of order 32 as Galois groups, Serdica Math. J., 2007, 33(1), 1–34 Zbl1199.12007
- [12] Smith T.L., Extra-special 2-groups of order 32 as Galois groups, Canad. J. Math., 1994, 46(4), 886–896 Zbl0810.12004
- [13] Swallow J.R., Thiem F.N., Quadratic corestriction, C 2-embedding problems, and explicit construction, Comm. Algebra, 2002, 30(7), 3227–3258 http://dx.doi.org/10.1081/AGB-120004485 Zbl1019.12001
- [14] Witt E., Konstruktion von galoisschen Körpernder Charakteristik p zu vorgegebener Gruppe der Ordnung p f, J. Reine Angew. Math., 1936, 174, 237–245 Zbl0013.19601

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.