Generalised elliptic functions
Matthew England; Chris Athorne
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1655-1672
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMatthew England, and Chris Athorne. "Generalised elliptic functions." Open Mathematics 10.5 (2012): 1655-1672. <http://eudml.org/doc/269465>.
@article{MatthewEngland2012,
abstract = {We consider multiply periodic functions, sometimes called Abelian functions, defined with respect to the period matrices associated with classes of algebraic curves. We realise them as generalisations of the Weierstraß ℘-function using two different approaches. These functions arise naturally as solutions to some of the important equations of mathematical physics and their differential equations, addition formulae, and applications have all been recent topics of study. The first approach discussed sees the functions defined as logarithmic derivatives of the σ-function, a modified Riemann θ-function. We can make use of known properties of the σ-function to derive power series expansions and in turn the properties mentioned above. This approach has been extended to a wide range of non hyperelliptic and higher genus curves and an overview of recent results is given. The second approach defines the functions algebraically, after first modifying the curve into its equivariant form. This approach allows the use of representation theory to derive a range of results at lower computational cost. We discuss the development of this theory for hyperelliptic curves and how it may be extended in the future. We consider how the two approaches may be combined, giving the explicit mappings for the genus 3 hyperelliptic theory. We consider the problem of generating bases of the functions and how these decompose when viewed in the equivariant form.},
author = {Matthew England, Chris Athorne},
journal = {Open Mathematics},
keywords = {Generalised elliptic functions; Sigma functions; Equivariance; generalised elliptic functions; sigma functions; equivariance},
language = {eng},
number = {5},
pages = {1655-1672},
title = {Generalised elliptic functions},
url = {http://eudml.org/doc/269465},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Matthew England
AU - Chris Athorne
TI - Generalised elliptic functions
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1655
EP - 1672
AB - We consider multiply periodic functions, sometimes called Abelian functions, defined with respect to the period matrices associated with classes of algebraic curves. We realise them as generalisations of the Weierstraß ℘-function using two different approaches. These functions arise naturally as solutions to some of the important equations of mathematical physics and their differential equations, addition formulae, and applications have all been recent topics of study. The first approach discussed sees the functions defined as logarithmic derivatives of the σ-function, a modified Riemann θ-function. We can make use of known properties of the σ-function to derive power series expansions and in turn the properties mentioned above. This approach has been extended to a wide range of non hyperelliptic and higher genus curves and an overview of recent results is given. The second approach defines the functions algebraically, after first modifying the curve into its equivariant form. This approach allows the use of representation theory to derive a range of results at lower computational cost. We discuss the development of this theory for hyperelliptic curves and how it may be extended in the future. We consider how the two approaches may be combined, giving the explicit mappings for the genus 3 hyperelliptic theory. We consider the problem of generating bases of the functions and how these decompose when viewed in the equivariant form.
LA - eng
KW - Generalised elliptic functions; Sigma functions; Equivariance; generalised elliptic functions; sigma functions; equivariance
UR - http://eudml.org/doc/269465
ER -
References
top- [1] Athorne C., Identities for hyperelliptic ℘-functions of genus one, two and three in covariant form, J. Phys. A, 2008, 41(41), #415202 http://dx.doi.org/10.1088/1751-8113/41/41/415202 Zbl1149.14027
- [2] Athorne C., A generalization of Baker’s quadratic formulae for hyperelliptic ℘-functions, Phys. Lett. A, 2011, 375(28–29), 2689–2693 http://dx.doi.org/10.1016/j.physleta.2011.05.056
- [3] Athorne C., On the equivariant algebraic Jacobian for curves of genus two, J. Geom. Phys., 2012, 62(4), 724–730 http://dx.doi.org/10.1016/j.geomphys.2011.12.016 Zbl1246.14014
- [4] Athorne C., Eilbeck J.C., Enolskii V.Z., Identities for the classical genus two ℘-function, J. Geom. Phys., 2003, 48(2–3), 354–368 http://dx.doi.org/10.1016/S0393-0440(03)00048-2 Zbl1056.33016
- [5] Baker H.F., Abelian Functions, Cambridge University Press, Cambridge, 1897 Zbl0848.14012
- [6] Baker H.F., On a system of differential equations leading to periodic functions, Acta Math., 1903, 27, 135–156 http://dx.doi.org/10.1007/BF02421301 Zbl34.0464.03
- [7] Baker H.F., An Introduction to the Theory of Multiply-Periodic Functions, Cambridge University Press, Cambridge, 1907 Zbl38.0478.05
- [8] Baldwin S., Eilbeck J.C., Gibbons J., Ônishi Y., Abelian functions for cyclic trigonal curves of genus 4, J. Geom. Phys., 2008, 58(4), 450–467 http://dx.doi.org/10.1016/j.geomphys.2007.12.001 Zbl1211.37082
- [9] Baldwin S., Gibbons J., Genus 4 trigonal reduction of the Benney equations, J. Phys. A, 2006, 39(14), 3607–3639 http://dx.doi.org/10.1088/0305-4470/39/14/008 Zbl1091.35065
- [10] Buchstaber V.M., Enolskii V.Z., Leykin D.V., Kleinian functions, hyperelliptic Jacobians and applications, Rev. Math. Math. Phys., 1997, 10(2), 3–120 Zbl0911.14019
- [11] Buchstaber V.M., Enolskii V.Z., Leykin D.V., Rational analogs of Abelian functions, Funct. Anal. Appl., 1999, 33(2), 83–94 http://dx.doi.org/10.1007/BF02465189
- [12] Buchstaber V.M., Enolskii V.Z., Leykin D.V., Uniformization of Jacobi varieties of trigonal curves and nonlinear equations, Funct. Anal. Appl., 2000, 34(3), 159–171 http://dx.doi.org/10.1007/BF02482405
- [13] Cassels J.W.S., Flynn E.V., Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, London Math. Soc. Lecture Note Ser., 230, Cambridge University Press, Cambridge, 1996 http://dx.doi.org/10.1017/CBO9780511526084 Zbl0857.14018
- [14] Cho K., Nakayashiki A., Differential structure of Abelian functions, Internat. J. Math., 2008, 19(2), 145–171 http://dx.doi.org/10.1142/S0129167X08004595 Zbl1165.14034
- [15] Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and Nonlinear Wave Equations, Academic Press, London-New York, 1982 Zbl0496.35001
- [16] Eilbeck J.C., England M., Ônishi Y., Abelian functions associated with genus three algebraic curves, LMS J. Comput. Math., 2011, 14, 291–326 Zbl1304.14042
- [17] Eilbeck J.C., Enolskii V.Z., Leykin D.V., On the Kleinian construction of Abelian functions of canonical algebraic curves, In: Symmetries and Integrability of Difference Equations, Sabaudia, May 16–22, 1998, CRM Proc. Lecture Notes, 25, American Mathematical Society, Providence, 2000, 121–138 Zbl1003.14008
- [18] Eilbeck J.C., Enolski V.Z., Matsutani S., Ônishi Y., Previato E., Abelian functions for trigonal curves of genus three, Int. Math. Res. Not. IMRN, 2007, #140 Zbl1210.14032
- [19] England M., Higher genus Abelian functions associated with cyclic trigonal curves, SIGMA Symmetry Integrability Geom. Methods Appl., 2010, 6, #025
- [20] England M., Deriving bases for Abelian functions, Comput. Methods Funct. Theory, 2011, 11(2), 617–654 Zbl1256.14027
- [21] England M., Athorne C., Building Abelian functions with generalised Hirota operators, preprint available at http://arxiv.org/abs/1203.3409 Zbl1242.14027
- [22] England M., Eilbeck J.C., Abelian functions associated with a cyclic tetragonal curve of genus six, J. Phys. A, 2009, 42(9), #095210 http://dx.doi.org/10.1088/1751-8113/42/9/095210 Zbl1157.14303
- [23] England M., Gibbons J., A genus six cyclic tetragonal reduction of the Benney equations, J. Phys. A, 2009, 42(37), #375202 http://dx.doi.org/10.1088/1751-8113/42/37/375202 Zbl1184.14059
- [24] Enolskii V.Z., Hackmann E., Kagramanova V., Kunz J., Lämmerzahl C., Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity, J. Geom. Phys., 2011, 61(5), 899–921 http://dx.doi.org/10.1016/j.geomphys.2011.01.001 Zbl1213.83039
- [25] Enolskii V.Z., Pronine M., Richter P.H., Double pendulum and θ-divisor, J. Nonlinear Sci., 2003, 13(2), 157–174 http://dx.doi.org/10.1007/s00332-002-0514-0 Zbl1021.37039
- [26] Farkas H.M., Kra I., Riemann Surfaces, 2nd ed., Grad. Texts in Math., 71, Springer, New York, 1992 http://dx.doi.org/10.1007/978-1-4612-2034-3
- [27] Korotkin D., Shramchenko V., On higher genus Weierstrass sigma-function, Phys. D (in press), DOI: 10.1016/j.physd.2012.01.002 Zbl1262.14033
- [28] Lang S., Introduction to Algebraic and Abelian Functions, 2nd ed., Grad. Texts in Math., 89, Springer, NewYork-Berlin, 1982 http://dx.doi.org/10.1007/978-1-4612-5740-0 Zbl0513.14024
- [29] McKean H., Moll V., Elliptic Curves, Cambridge University Press, Cambridge, 1997
- [30] Nakayashiki A., On algebraic expressions of sigma functions for (n; s)-curves, Asian J. Math., 2010, 14(2), 175–211 Zbl1214.14028
- [31] Washington L.C., Elliptic Curves, 2nd ed., Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, Boca Raton, 2008 Zbl1200.11043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.