The L q spectra and Rényi dimension of generalized inhomogeneous self-similar measures
Open Mathematics (2014)
- Volume: 12, Issue: 9, page 1305-1319
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Arbeiter M., Patzschke N., Random self-similar multifractals, Math. Nachr., 1996, 181, 5–42 http://dx.doi.org/10.1002/mana.3211810102 Zbl0873.28003
- [2] Badii R., Politi A., Complexity, Cambridge Nonlinear Sci. Ser., 6, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511524691 Zbl1042.82500
- [3] Bárány B., On the Hausdorff dimension of a family of self-similar sets with complicated overlaps, Fund. Math., 2009, 206, 49–59 http://dx.doi.org/10.4064/fm206-0-4 Zbl1194.28006
- [4] Barnsley M.F., Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993
- [5] Barnsley M.F., Superfractals, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9781107590168
- [6] Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275 http://dx.doi.org/10.1098/rspa.1985.0057 Zbl0588.28002
- [7] Beck C., Schlögl F., Thermodynamics of Chaotic Systems, Cambridge Nonlinear Sci. Ser., 4, Cambridge University Press, Cambridge, 1993 http://dx.doi.org/10.1017/CBO9780511524585
- [8] Falconer K.J., Fractal Geometry, John Wiley & Sons, Chichester, 1990
- [9] Falconer K., Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997 Zbl0869.28003
- [10] Feng D.-J., Gibbs properties of self-conformal measures and the multifractal formalism, Ergodic Theory Dynam. Systems, 2007, 27(3), 787–812 http://dx.doi.org/10.1017/S0143385706000952 Zbl1126.28003
- [11] Feng D.-J., Olivier E., Multifractal analysis of weak Gibbs measures and phase transition - application to some Bernoulli convolutions, Ergodic Theory Dynam. Systems, 2003, 23(6), 1751–1784 http://dx.doi.org/10.1017/S0143385703000051 Zbl1128.37303
- [12] Glickenstein D., Strichartz R.S., Nonlinear self-similar measures and their Fourier transforms, Indiana Univ. Math. J., 1996, 45(1), 205–220 http://dx.doi.org/10.1512/iumj.1996.45.1156 Zbl0860.28007
- [13] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055 Zbl0598.28011
- [14] Lasota A., Myjak J., On a dimension of measures, Bull. Polish Acad. Sci. Math., 2002, 50(2), 221–235 Zbl1020.28004
- [15] Lau K.-S., Self-similarity, L p-spectrum and multifractal formalism, In: Fractal Geometry and Stochastics, Progr. Probab., 37, Birkhäuser, Basel, 1995, 55–90 http://dx.doi.org/10.1007/978-3-0348-7755-8_4
- [16] Lau K.-S., Ngai S.-M., Multifractal measures and a weak separation condition, Adv. Math., 1991, 141(1), 45–96 http://dx.doi.org/10.1006/aima.1998.1773 Zbl0929.28007
- [17] Lau K.-S., Ngai S.-M., L q-spectrum of Bernoulli convolutions associated with P. V. numbers, Osaka J. Math., 1999, 36(4), 993–1010 Zbl0956.28010
- [18] Liszka P., On inhomogeneous self-similar measures and their L q spectra, Ann. Polon. Math., 2013, 109(1), 75–92 http://dx.doi.org/10.4064/ap109-1-6 Zbl06176235
- [19] Olsen L., Snigireva N., L q spectra and Rényi dimensions of in-homogeneous self-similar measures, Nonlinearity, 2007, 20(1), 151–175 http://dx.doi.org/10.1088/0951-7715/20/1/010 Zbl1124.28010
- [20] Olsen L., Snigireva N., In-homogenous self-similar measures and their Fourier transforms, Math. Proc. Cambridge Philos. Soc., 2008, 144(2), 465–493 http://dx.doi.org/10.1017/S0305004107000771 Zbl1146.28005
- [21] Olsen L., Snigireva N., Multifractal spectra of in-homogenous self-similar measures, Indiana Univ. Math. J., 2008, 57(4), 1789–1844 http://dx.doi.org/10.1512/iumj.2008.57.3622 Zbl1218.28005
- [22] Peruggia M., Discrete Iterated Function Systems, AK Peters, Wellesley, MA, 1993 Zbl0788.60086
- [23] Rényi A., Probability Theory, North-Holland Ser. Appl. Math. Mech., 10, North-Holland, Elsevier, Amsterdam-London, New York, 1970
- [24] Testud B., Transitions de phase dans l’analyse multifractale de mesures auto-similaires, C. R. Math. Acad. Sci. Paris, 2005, 340(9), 653–658 http://dx.doi.org/10.1016/j.crma.2005.03.020 Zbl1077.28009
- [25] Testud B., Phase transitions for the multifractal analysis of self-similar measures, Nonlinearity, 2006, 19(5), 1201–1217 http://dx.doi.org/10.1088/0951-7715/19/5/009 Zbl1093.28007