Morse index of a cyclic polygon
Open Mathematics (2011)
- Volume: 9, Issue: 2, page 364-377
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGaiane Panina, and Alena Zhukova. "Morse index of a cyclic polygon." Open Mathematics 9.2 (2011): 364-377. <http://eudml.org/doc/269474>.
@article{GaianePanina2011,
abstract = {It is known that cyclic configurations of a planar polygonal linkage are critical points of the signed area function. In the paper we give an explicit formula of the Morse index for the signed area of a cyclic configuration. We show that it depends not only on the combinatorics of a cyclic configuration, but also on its metric properties.},
author = {Gaiane Panina, Alena Zhukova},
journal = {Open Mathematics},
keywords = {Morse index; Linkage; Moduli space; Cyclic polygon; linkage; moduli space; cyclic polygon},
language = {eng},
number = {2},
pages = {364-377},
title = {Morse index of a cyclic polygon},
url = {http://eudml.org/doc/269474},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Gaiane Panina
AU - Alena Zhukova
TI - Morse index of a cyclic polygon
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 364
EP - 377
AB - It is known that cyclic configurations of a planar polygonal linkage are critical points of the signed area function. In the paper we give an explicit formula of the Morse index for the signed area of a cyclic configuration. We show that it depends not only on the combinatorics of a cyclic configuration, but also on its metric properties.
LA - eng
KW - Morse index; Linkage; Moduli space; Cyclic polygon; linkage; moduli space; cyclic polygon
UR - http://eudml.org/doc/269474
ER -
References
top- [1] Cerf J., La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. Inst. Hautes Études Sci., 1970, 39, 5–173 http://dx.doi.org/10.1007/BF02684687 Zbl0213.25202
- [2] Elerdashvili E., Jibladze M., Khimshiashvili G., Cyclic configurations of pentagon linkages, Bull. Georgian Acad. Sci., 2008, 2(4), 29–32 Zbl1193.52012
- [3] Farber M., Schütz, D., Homology of planar polygon spaces, Geom. Dedicata, 2007, 125(1), 75–92. http://dx.doi.org/10.1007/s10711-007-9139-7 Zbl1132.52024
- [4] Khimshiashvili G., Configuration spaces and signature formulas, J. Math. Sci. (N. Y.), 2009, 160(6), 727–736 http://dx.doi.org/10.1007/s10958-009-9524-x Zbl1181.14061
- [5] Panina G., Khimshiashvili G., Cyclic polygons are critical points of area, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2008, 360, 238–245 Zbl1193.52015
- [6] Pólya G., Mathematics and Plausible Reasoning. Vol. 1: Induction and Analogy in Mathematics, Princeton University Press, Princeton, 1954
- [7] Zvonkine D., Configuration spaces of hinge constructions. Russ. J. Math. Phys., 1997, 5(2), 247–266 Zbl0924.57016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.