A category Ψ-density topology

Władysław Wilczyński; Wojciech Wojdowski

Open Mathematics (2011)

  • Volume: 9, Issue: 5, page 1057-1066
  • ISSN: 2391-5455

Abstract

top
Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open representation of A.

How to cite

top

Władysław Wilczyński, and Wojciech Wojdowski. "A category Ψ-density topology." Open Mathematics 9.5 (2011): 1057-1066. <http://eudml.org/doc/269476>.

@article{WładysławWilczyński2011,
abstract = {Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open representation of A.},
author = {Władysław Wilczyński, Wojciech Wojdowski},
journal = {Open Mathematics},
keywords = {Density point; Density topology},
language = {eng},
number = {5},
pages = {1057-1066},
title = {A category Ψ-density topology},
url = {http://eudml.org/doc/269476},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Władysław Wilczyński
AU - Wojciech Wojdowski
TI - A category Ψ-density topology
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 1057
EP - 1066
AB - Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open representation of A.
LA - eng
KW - Density point; Density topology
UR - http://eudml.org/doc/269476
ER -

References

top
  1. [1] Ciesielski K., Larson L, Ostaszewski K., J-Density Continuous Functions, Mem. Amer. Math. Soc, 515, American Mathematical Society, Providence, 1994 
  2. [2] Erdös P., Some remarks on set theory, Ann. of Math., 1943, 44(4), 643–646 http://dx.doi.org/10.2307/1969101 Zbl0060.13112
  3. [3] Goffman C, Neugebauer C.J., Nishiura T., Density topology and approximate continuity, Duke Math. J., 1961, 28(4), 497–505 http://dx.doi.org/10.1215/S0012-7094-61-02847-2 Zbl0101.15502
  4. [4] Goffman C, Waterman D., Approximately continuous transformations, Proc. Amer. Math. Soc, 1961, 12(1), 116–121 http://dx.doi.org/10.1090/S0002-9939-1961-0120327-6 Zbl0096.17103
  5. [5] Haupt O., Pauc Ch., La topologie approximative de Denjoy envisagée comme vraie topologie, C. R. Acad. Sci. Paris, 1952, 234, 390–392 Zbl0046.05601
  6. [6] Hejduk J., On the abstract density topologies, preprint available at http://www.math.uni.lodz.pl/preprints,483.html Zbl1199.54018
  7. [7] Kuratowski C., Ulam S., Quelques propriétés topologiques du produit combinatoire, Fund. Math., 1932, 19, 247–251 Zbl0005.18301
  8. [8] Lukěs J., Malý J., Zajíčcek L., Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math., 1189, Springer, Berlin, 1986 
  9. [9] Miller H.I., Baire outer kernels of sets, Publ. Inst. Math. (Beograd) (N.S.), 1981, 30(44), 117–122 Zbl0501.28001
  10. [10] O’Malley R.J., Approximately differentiable functions: the r topology, Pacific J. Math., 1977, 72(1), 207–222 
  11. [11] Ostaszewski K., Continuity in the density topology, Real Anal. Exchange, 1982, 7(2), 259–270 Zbl0494.26004
  12. [12] Oxtoby J.C., Measure and Category, 2nd ed., Grad. Texts in Math., 2, Springer, New York-Berlin, 1980 Zbl0435.28011
  13. [13] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density topology, Fund. Math., 1985, 125(2), 167–173 Zbl0613.26002
  14. [14] Poreda W., Wagner-Bojakowska E., Wilczyński W., Remarks on I-density and I-approximately continuous functions, Comment. Math. Univ. Carolin., 1985, 26(3), 553–563 Zbl0587.54056
  15. [15] Sierpiński W., Sur la dualité entre la première catégorie et la mesure nulle, Fund. Math., 1934, 22, 276–280 Zbl0009.20405
  16. [16] Sierpiński W., Hypothèse du Continu, Monogr. Mat., 4, Warszawa-Lwów, 1934 Zbl60.0035.01
  17. [17] Sierpiński W., Lusin N., Sur une décomposition dun intervalle en une infinité non dénombrable densembles non measurables, C. R. Acad. Sci. Paris, 1917, 165, 422–424 Zbl46.0294.01
  18. [18] Szpilrajn E., Remarques sur les fonctions complètement additives densemble et sur les ensembles jouissant de la propriètè de Baire, Fund. Math., 1934, 22, 303–311 Zbl0009.30404
  19. [19] Tall F.D., The density topology, Pacific J. Math., 1976, 62(1), 275–284 Zbl0305.54039
  20. [20] Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315 Zbl0086.04601
  21. [21] Taylor S.J., An alternative form of Egoroffs theorem, Fund. Math., 1960, 48, 169–174 Zbl0098.26502
  22. [22] Terepeta M., Wagner-Bojakowska E., ψ-density topology, Rend. Circ. Mat. Palermo, 1999, 48(3), 451–476 http://dx.doi.org/10.1007/BF02844336 Zbl0963.26003
  23. [23] Wagner-Bojakowska E., Remarks on ψ-density topology, Atti Sem. Mat. Fis. Univ. Modena, 2001, 49(1), 79–87 
  24. [24] Wagner-Bojakowska E., Wilczyński W., The interior operation in a ψ-density topology, Rend. Circ. Mat. Palermo, 2000, 49(1), 5–26 http://dx.doi.org/10.1007/BF02904217 Zbl0949.26002
  25. [25] Wagner-Bojakowska E., Wilczyński W., Comparison of ψ-density topologies, Real. Anal. Exchange, 2000, 25(2), 661–672 Zbl1016.26001
  26. [26] Wilczyński W., A generalization of the density topology, Real. Anal. Exchange, 1983, 8(1), 16–20 
  27. [27] Wilczyński W., Density topologies, In: Handbook of Measure Theory, North-Holland, Amsterdam, 2002, 675–702 http://dx.doi.org/10.1016/B978-044450263-6/50016-6 Zbl1021.28002
  28. [28] Wojdowski W., Density topologies involving measure and category, Demonstratio Math., 1989, 22(3), 797–812 Zbl0703.26006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.