A category Ψ-density topology
Władysław Wilczyński; Wojciech Wojdowski
Open Mathematics (2011)
- Volume: 9, Issue: 5, page 1057-1066
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topWładysław Wilczyński, and Wojciech Wojdowski. "A category Ψ-density topology." Open Mathematics 9.5 (2011): 1057-1066. <http://eudml.org/doc/269476>.
@article{WładysławWilczyński2011,
abstract = {Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open representation of A.},
author = {Władysław Wilczyński, Wojciech Wojdowski},
journal = {Open Mathematics},
keywords = {Density point; Density topology},
language = {eng},
number = {5},
pages = {1057-1066},
title = {A category Ψ-density topology},
url = {http://eudml.org/doc/269476},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Władysław Wilczyński
AU - Wojciech Wojdowski
TI - A category Ψ-density topology
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 1057
EP - 1066
AB - Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open representation of A.
LA - eng
KW - Density point; Density topology
UR - http://eudml.org/doc/269476
ER -
References
top- [1] Ciesielski K., Larson L, Ostaszewski K., J-Density Continuous Functions, Mem. Amer. Math. Soc, 515, American Mathematical Society, Providence, 1994
- [2] Erdös P., Some remarks on set theory, Ann. of Math., 1943, 44(4), 643–646 http://dx.doi.org/10.2307/1969101 Zbl0060.13112
- [3] Goffman C, Neugebauer C.J., Nishiura T., Density topology and approximate continuity, Duke Math. J., 1961, 28(4), 497–505 http://dx.doi.org/10.1215/S0012-7094-61-02847-2 Zbl0101.15502
- [4] Goffman C, Waterman D., Approximately continuous transformations, Proc. Amer. Math. Soc, 1961, 12(1), 116–121 http://dx.doi.org/10.1090/S0002-9939-1961-0120327-6 Zbl0096.17103
- [5] Haupt O., Pauc Ch., La topologie approximative de Denjoy envisagée comme vraie topologie, C. R. Acad. Sci. Paris, 1952, 234, 390–392 Zbl0046.05601
- [6] Hejduk J., On the abstract density topologies, preprint available at http://www.math.uni.lodz.pl/preprints,483.html Zbl1199.54018
- [7] Kuratowski C., Ulam S., Quelques propriétés topologiques du produit combinatoire, Fund. Math., 1932, 19, 247–251 Zbl0005.18301
- [8] Lukěs J., Malý J., Zajíčcek L., Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math., 1189, Springer, Berlin, 1986
- [9] Miller H.I., Baire outer kernels of sets, Publ. Inst. Math. (Beograd) (N.S.), 1981, 30(44), 117–122 Zbl0501.28001
- [10] O’Malley R.J., Approximately differentiable functions: the r topology, Pacific J. Math., 1977, 72(1), 207–222
- [11] Ostaszewski K., Continuity in the density topology, Real Anal. Exchange, 1982, 7(2), 259–270 Zbl0494.26004
- [12] Oxtoby J.C., Measure and Category, 2nd ed., Grad. Texts in Math., 2, Springer, New York-Berlin, 1980 Zbl0435.28011
- [13] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density topology, Fund. Math., 1985, 125(2), 167–173 Zbl0613.26002
- [14] Poreda W., Wagner-Bojakowska E., Wilczyński W., Remarks on I-density and I-approximately continuous functions, Comment. Math. Univ. Carolin., 1985, 26(3), 553–563 Zbl0587.54056
- [15] Sierpiński W., Sur la dualité entre la première catégorie et la mesure nulle, Fund. Math., 1934, 22, 276–280 Zbl0009.20405
- [16] Sierpiński W., Hypothèse du Continu, Monogr. Mat., 4, Warszawa-Lwów, 1934 Zbl60.0035.01
- [17] Sierpiński W., Lusin N., Sur une décomposition dun intervalle en une infinité non dénombrable densembles non measurables, C. R. Acad. Sci. Paris, 1917, 165, 422–424 Zbl46.0294.01
- [18] Szpilrajn E., Remarques sur les fonctions complètement additives densemble et sur les ensembles jouissant de la propriètè de Baire, Fund. Math., 1934, 22, 303–311 Zbl0009.30404
- [19] Tall F.D., The density topology, Pacific J. Math., 1976, 62(1), 275–284 Zbl0305.54039
- [20] Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315 Zbl0086.04601
- [21] Taylor S.J., An alternative form of Egoroffs theorem, Fund. Math., 1960, 48, 169–174 Zbl0098.26502
- [22] Terepeta M., Wagner-Bojakowska E., ψ-density topology, Rend. Circ. Mat. Palermo, 1999, 48(3), 451–476 http://dx.doi.org/10.1007/BF02844336 Zbl0963.26003
- [23] Wagner-Bojakowska E., Remarks on ψ-density topology, Atti Sem. Mat. Fis. Univ. Modena, 2001, 49(1), 79–87
- [24] Wagner-Bojakowska E., Wilczyński W., The interior operation in a ψ-density topology, Rend. Circ. Mat. Palermo, 2000, 49(1), 5–26 http://dx.doi.org/10.1007/BF02904217 Zbl0949.26002
- [25] Wagner-Bojakowska E., Wilczyński W., Comparison of ψ-density topologies, Real. Anal. Exchange, 2000, 25(2), 661–672 Zbl1016.26001
- [26] Wilczyński W., A generalization of the density topology, Real. Anal. Exchange, 1983, 8(1), 16–20
- [27] Wilczyński W., Density topologies, In: Handbook of Measure Theory, North-Holland, Amsterdam, 2002, 675–702 http://dx.doi.org/10.1016/B978-044450263-6/50016-6 Zbl1021.28002
- [28] Wojdowski W., Density topologies involving measure and category, Demonstratio Math., 1989, 22(3), 797–812 Zbl0703.26006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.