Smoothing of rational m-ropes
Edoardo Ballico; Elizabeth Gasparim; Thomas Köppe
Open Mathematics (2009)
- Volume: 7, Issue: 4, page 623-628
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topEdoardo Ballico, Elizabeth Gasparim, and Thomas Köppe. "Smoothing of rational m-ropes." Open Mathematics 7.4 (2009): 623-628. <http://eudml.org/doc/269488>.
@article{EdoardoBallico2009,
abstract = {In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.},
author = {Edoardo Ballico, Elizabeth Gasparim, Thomas Köppe},
journal = {Open Mathematics},
keywords = {Ropes; Non-reduced schemes; Smoothing; ropes; non-reduced schemes; smoothing},
language = {eng},
number = {4},
pages = {623-628},
title = {Smoothing of rational m-ropes},
url = {http://eudml.org/doc/269488},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Edoardo Ballico
AU - Elizabeth Gasparim
AU - Thomas Köppe
TI - Smoothing of rational m-ropes
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 623
EP - 628
AB - In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.
LA - eng
KW - Ropes; Non-reduced schemes; Smoothing; ropes; non-reduced schemes; smoothing
UR - http://eudml.org/doc/269488
ER -
References
top- [1] Arbarello E., Cornalba M., Su una congettura di Petri, Comm. Math. Helv., 1981, 56, 1–38 http://dx.doi.org/10.1007/BF02566195[Crossref]
- [2] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of algebraic curves I, Springer, Berlin, 1985 Zbl0559.14017
- [3] Ballico E., A remark on linear series of general k-gonal curves, Boll. Unione Mat. Ital. (7), 1989, 3-A, 195–197 Zbl0702.14026
- [4] Ballico E., Scrollar invariants of smooth projective curves, J. Pure Appl. Algebra, 2003, 166(3), 239–246 http://dx.doi.org/10.1016/S0022-4049(01)00023-8[Crossref] Zbl1059.14501
- [5] Bayer D., Eisenbud D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc, 1995, 347(3), 719–756 http://dx.doi.org/10.2307/2154871[Crossref] Zbl0853.14016
- [6] Chandler K.A., Geometry of dots and ropes, Trans. Amer. Math. Soc, 1995, 347(3), 767–784 http://dx.doi.org/10.2307/2154873[Crossref] Zbl0830.14020
- [7] Coppens M., Martens G., Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg, 1999, 69, 347–371 http://dx.doi.org/10.1007/BF02940885[Crossref] Zbl0957.14018
- [8] Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space curves, Math. Ann., 1981, 256(4), 453–463 http://dx.doi.org/10.1007/BF01450541[Crossref] Zbl0443.14015
- [9] Gallego F.J., González M., Purnaprajna B.P., Deformation of finite morphisms and smoothing of ropes, Compos. Math., 2008, 144(3), 673–688 http://dx.doi.org/10.1112/S0010437X07003326[WoS][Crossref] Zbl1146.14017
- [10] González M., Smoothing of ribbons over curves, J. Reine Angew. Math., 2006, 591, 201–213 Zbl1094.14016
- [11] Hartshorne R., Cohomological dimension of algebraic varieties, Ann. of Math., 1968, 88(3), 402–450 http://dx.doi.org/10.2307/1970720[Crossref] Zbl0169.23302
- [12] Mumford D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Oxford University Press, London 1970 Zbl0223.14022
- [13] Sacchiero G., Normal bundles of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 1980, 26, 33–40
- [14] Schreyer F.-O., Syzygies of canonical curves and special linear series, Math. Ann., 1986, 275(1), 105–137 http://dx.doi.org/10.1007/BF01458587[Crossref] Zbl0578.14002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.