Smoothing of rational m-ropes

Edoardo Ballico; Elizabeth Gasparim; Thomas Köppe

Open Mathematics (2009)

  • Volume: 7, Issue: 4, page 623-628
  • ISSN: 2391-5455

Abstract

top
In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.

How to cite

top

Edoardo Ballico, Elizabeth Gasparim, and Thomas Köppe. "Smoothing of rational m-ropes." Open Mathematics 7.4 (2009): 623-628. <http://eudml.org/doc/269488>.

@article{EdoardoBallico2009,
abstract = {In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.},
author = {Edoardo Ballico, Elizabeth Gasparim, Thomas Köppe},
journal = {Open Mathematics},
keywords = {Ropes; Non-reduced schemes; Smoothing; ropes; non-reduced schemes; smoothing},
language = {eng},
number = {4},
pages = {623-628},
title = {Smoothing of rational m-ropes},
url = {http://eudml.org/doc/269488},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Edoardo Ballico
AU - Elizabeth Gasparim
AU - Thomas Köppe
TI - Smoothing of rational m-ropes
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 623
EP - 628
AB - In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.
LA - eng
KW - Ropes; Non-reduced schemes; Smoothing; ropes; non-reduced schemes; smoothing
UR - http://eudml.org/doc/269488
ER -

References

top
  1. [1] Arbarello E., Cornalba M., Su una congettura di Petri, Comm. Math. Helv., 1981, 56, 1–38 http://dx.doi.org/10.1007/BF02566195[Crossref] 
  2. [2] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of algebraic curves I, Springer, Berlin, 1985 Zbl0559.14017
  3. [3] Ballico E., A remark on linear series of general k-gonal curves, Boll. Unione Mat. Ital. (7), 1989, 3-A, 195–197 Zbl0702.14026
  4. [4] Ballico E., Scrollar invariants of smooth projective curves, J. Pure Appl. Algebra, 2003, 166(3), 239–246 http://dx.doi.org/10.1016/S0022-4049(01)00023-8[Crossref] Zbl1059.14501
  5. [5] Bayer D., Eisenbud D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc, 1995, 347(3), 719–756 http://dx.doi.org/10.2307/2154871[Crossref] Zbl0853.14016
  6. [6] Chandler K.A., Geometry of dots and ropes, Trans. Amer. Math. Soc, 1995, 347(3), 767–784 http://dx.doi.org/10.2307/2154873[Crossref] Zbl0830.14020
  7. [7] Coppens M., Martens G., Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg, 1999, 69, 347–371 http://dx.doi.org/10.1007/BF02940885[Crossref] Zbl0957.14018
  8. [8] Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space curves, Math. Ann., 1981, 256(4), 453–463 http://dx.doi.org/10.1007/BF01450541[Crossref] Zbl0443.14015
  9. [9] Gallego F.J., González M., Purnaprajna B.P., Deformation of finite morphisms and smoothing of ropes, Compos. Math., 2008, 144(3), 673–688 http://dx.doi.org/10.1112/S0010437X07003326[WoS][Crossref] Zbl1146.14017
  10. [10] González M., Smoothing of ribbons over curves, J. Reine Angew. Math., 2006, 591, 201–213 Zbl1094.14016
  11. [11] Hartshorne R., Cohomological dimension of algebraic varieties, Ann. of Math., 1968, 88(3), 402–450 http://dx.doi.org/10.2307/1970720[Crossref] Zbl0169.23302
  12. [12] Mumford D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Oxford University Press, London 1970 Zbl0223.14022
  13. [13] Sacchiero G., Normal bundles of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 1980, 26, 33–40 
  14. [14] Schreyer F.-O., Syzygies of canonical curves and special linear series, Math. Ann., 1986, 275(1), 105–137 http://dx.doi.org/10.1007/BF01458587[Crossref] Zbl0578.14002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.