Periodic harmonic functions on lattices and points count in positive characteristic

Mikhail Zaidenberg

Open Mathematics (2009)

  • Volume: 7, Issue: 3, page 365-381
  • ISSN: 2391-5455

Abstract

top
This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.

How to cite

top

Mikhail Zaidenberg. "Periodic harmonic functions on lattices and points count in positive characteristic." Open Mathematics 7.3 (2009): 365-381. <http://eudml.org/doc/269497>.

@article{MikhailZaidenberg2009,
abstract = {This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.},
author = {Mikhail Zaidenberg},
journal = {Open Mathematics},
keywords = {Cellular automaton; Chebyshev-Dickson polynomial; Convolution operator; Lattice; Finite field; Discrete Fourier transform; Discrete harmonic function; Pluri-periodic function; cellular automaton; convolution operator; lattice; finite field; discrete Fourier transform; discrete harmonic function; pluri-periodic function},
language = {eng},
number = {3},
pages = {365-381},
title = {Periodic harmonic functions on lattices and points count in positive characteristic},
url = {http://eudml.org/doc/269497},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Mikhail Zaidenberg
TI - Periodic harmonic functions on lattices and points count in positive characteristic
JO - Open Mathematics
PY - 2009
VL - 7
IS - 3
SP - 365
EP - 381
AB - This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.
LA - eng
KW - Cellular automaton; Chebyshev-Dickson polynomial; Convolution operator; Lattice; Finite field; Discrete Fourier transform; Discrete harmonic function; Pluri-periodic function; cellular automaton; convolution operator; lattice; finite field; discrete Fourier transform; discrete harmonic function; pluri-periodic function
UR - http://eudml.org/doc/269497
ER -

References

top
  1. [1] Amin A.T., Slater P.J., Zhang G.-H., Parity dimension for graphs-a linear algebraic approach, Linear and Multilinear Algebra, 2002, 50, 327–342 http://dx.doi.org/10.1080/0308108021000049293 Zbl1023.05095
  2. [2] Barua R., Ramakrishnan S., σ-game, σ+-game and two-dimensional additive cellular automata, Theoret. Comput. Sci., 1996, 154, 349–366 http://dx.doi.org/10.1016/0304-3975(95)00091-7 
  3. [3] Bhargava M., Zieve M.E., Factoring Dickson polynomials over finite fields, Finite Fields Appl., 1999, 5, 103–111 http://dx.doi.org/10.1006/ffta.1998.0221 
  4. [4] Bicknell M., A primer for the Fibonacci numbers VII, Fibonacci Quart., 1970, 8, 407–420 
  5. [5] Goldwasser J., Klostermeyer W., Ware H., Fibonacci Polynomials and Parity Domination in Grid Graphs, Graphs Combin., 2002, 18, 271–283 http://dx.doi.org/10.1007/s003730200020 Zbl0999.05079
  6. [6] Goldwasser J., Wang X., Wu Y., Does the lit-only restriction make any difference for the σ-game and σ+-game?, European J. Combin., 2009, 30, 774–787 http://dx.doi.org/10.1016/j.ejc.2008.09.020 Zbl1169.91011
  7. [7] Gravier S., Mhalla M., Tannier E., On a modular domination game, Theoret. Comput. Sci., 2003, 306, 291–303 http://dx.doi.org/10.1016/S0304-3975(03)00285-8 Zbl1060.68076
  8. [8] Heath-Brown D.R., Artin’s conjecture for primitive roots, Quart. J. Math., 1986, 37, 27–38 http://dx.doi.org/10.1093/qmath/37.1.27 Zbl0586.10025
  9. [9] Hoggatt V.E.Jr., Bicknell-Johnson M., Divisibility properties of polynomials in Pascal’s triangle, Fibonacci Quart., 1978, 16, 501–513 Zbl0388.10009
  10. [10] Hoggatt V.E.Jr., Long C.T., Divisibility properties of generalized Fibonacci polynomials, Fibonacci Quart., 1974, 12, 113–120 Zbl0284.10003
  11. [11] Humphreys J.E., Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1978 Zbl0447.17001
  12. [12] Hunziker M., Machiavelo A., Park J., Chebyshev polynomials over finite fields and reversibility of σ-automata on square grids, Theoret. Comput. Sci., 2004, 320, 465–483 http://dx.doi.org/10.1016/j.tcs.2004.03.031 Zbl1068.68089
  13. [13] Jacob G., Reutenauer C., Sakarovitch J., On a divisibility property of Fibonacci polynomials, preprint available at http://en.scientificcommons.org/43936584 
  14. [14] Levy D., The irreducible factorization of Fibonacci polynomials over Q, Fibonacci Quart., 2001, 39, 309–319 Zbl1009.11012
  15. [15] Lidl R., Mullen G.L., Turnwald G., Dickson polynomials, Longman Scientific and Technical, Harlow, John Wiley and Sons, Inc., New York, 1993 
  16. [16] Martin O., Odlyzko A.M., Wolfram S., Algebraic properties of cellular automata, Comm. Math. Phys., 1984, 93, 219–258 http://dx.doi.org/10.1007/BF01223745 Zbl0564.68038
  17. [17] Moree P., Artin’s primitive root conjecture-a survey, preprint available at http://arxiv.org/abs/math/0412262 Zbl1271.11002
  18. [18] Ram Murty M., Artin’s conjecture for primitive roots, Math. Intelligencer, 1988, 10, 59–67 http://dx.doi.org/10.1007/BF03023749 Zbl0656.10044
  19. [19] Sarkar P., Barua R., Multidimensional σ-automata, π-polynomials and generalised S-matrices, Theoret. Comput. Sci., 1998, 197, 111–138 http://dx.doi.org/10.1016/S0304-3975(97)00160-6 Zbl0902.68125
  20. [20] Sutner K., σ-automata and Chebyshev-polynomials, Theoret. Comput. Sci., 2000, 230, 49–73 http://dx.doi.org/10.1016/S0304-3975(97)00242-9 
  21. [21] Webb W.A., Parberry E.A., Divisibility properties of Fibonacci polynomials, Fibonacci Quart., 1969, 7, 457–463 Zbl0211.37303
  22. [22] Zaidenberg M., Periodic binary harmonic functions on lattices, Adv. in Appl. Math., 2008, 40, 225–265 http://dx.doi.org/10.1016/j.aam.2007.01.004 
  23. [23] Zaidenberg M., Convolution equations on lattices: periodic solutions with values in a prime characteristic field, In: Kapranov M., Kolyada S., Manin Y.I., Moree P., Potyagailo L.A. (Eds.), Geometry and Dynamics of Groups and Spaces, In Memory of Alexander Reznikov, Progress in Mathematics 265, 719–740, Birkhäuser, 2008 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.