Scattering monodromy and the A 1 singularity

Larry Bates; Richard Cushman

Open Mathematics (2007)

  • Volume: 5, Issue: 3, page 429-451
  • ISSN: 2391-5455

Abstract

top
We present the notion of scattering monodromy for a two degree of freedom hyperbolic oscillator and apply this idea to determine the Picard-Lefschetz monodromy of the isolated singular point of a quadratic function of two complex variables.

How to cite

top

Larry Bates, and Richard Cushman. "Scattering monodromy and the A 1 singularity." Open Mathematics 5.3 (2007): 429-451. <http://eudml.org/doc/269513>.

@article{LarryBates2007,
abstract = {We present the notion of scattering monodromy for a two degree of freedom hyperbolic oscillator and apply this idea to determine the Picard-Lefschetz monodromy of the isolated singular point of a quadratic function of two complex variables.},
author = {Larry Bates, Richard Cushman},
journal = {Open Mathematics},
keywords = {scattering theory; Hamiltonian mechanics; hyperbolic oscillator; Picard-Lefschetz monodromy},
language = {eng},
number = {3},
pages = {429-451},
title = {Scattering monodromy and the A 1 singularity},
url = {http://eudml.org/doc/269513},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Larry Bates
AU - Richard Cushman
TI - Scattering monodromy and the A 1 singularity
JO - Open Mathematics
PY - 2007
VL - 5
IS - 3
SP - 429
EP - 451
AB - We present the notion of scattering monodromy for a two degree of freedom hyperbolic oscillator and apply this idea to determine the Picard-Lefschetz monodromy of the isolated singular point of a quadratic function of two complex variables.
LA - eng
KW - scattering theory; Hamiltonian mechanics; hyperbolic oscillator; Picard-Lefschetz monodromy
UR - http://eudml.org/doc/269513
ER -

References

top
  1. [1] R. Cushman and L. Bates: Global aspects of classical integrable systems, Birkhäuser, Basel, 1997. Zbl0882.58023
  2. [2] J.J. Duistermaat: “On global action angle coordinates”, Commun. Pure Appl. Math., Vol. 33, (1980), pp. 687–706. http://dx.doi.org/10.1002/cpa.3160330602 Zbl0439.58014
  3. [3] H. Flaschka: “A remark on integrable Hamiltonian systems”, Phys. Lett. A., Vol. 121, (1988), pp. 505–508. http://dx.doi.org/10.1016/0375-9601(88)90678-0 
  4. [4] E. Looijenga: Isolated singularities on complete intersections, Cambridge University Press, Cambridge, U.K., 1984. 
  5. [5] J. Milnor: Singularities of complex hypersurfaces, Princeton University Press, Princeton, 1968. 
  6. [6] J. Stillwell: Classical Topology and Combinatorial Group Theory, Graduate Texts in Mathematics, Vol. 72, Springer Verlag, Berlin, 1980. Zbl0453.57001
  7. [7] J.L. Synge: “Classical Dynamics”, In: S. Flugge (Ed.): Encyclopedia of Physics, Vol. III/1 Principles of Classical Mechanics and Field Theory, Springer Verlag, Berlin, 1960, pp. 1–225. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.