Total curvature and volume of foliations on the sphere S 2

Amine Fawaz

Open Mathematics (2009)

  • Volume: 7, Issue: 4, page 660-669
  • ISSN: 2391-5455

Abstract

top
In this paper we study a curvature integral associated with a pair of orthogonal foliations on the Riemann sphere S 2 and we compute the minimal value of the volume of meromorphic foliations.

How to cite

top

Amine Fawaz. "Total curvature and volume of foliations on the sphere S 2." Open Mathematics 7.4 (2009): 660-669. <http://eudml.org/doc/269540>.

@article{AmineFawaz2009,
abstract = {In this paper we study a curvature integral associated with a pair of orthogonal foliations on the Riemann sphere S 2 and we compute the minimal value of the volume of meromorphic foliations.},
author = {Amine Fawaz},
journal = {Open Mathematics},
keywords = {Foliation; Geodesic curvature; Green’s function; Singular; Volume; foliation; geodesic curvature; Green's function; singular; volume},
language = {eng},
number = {4},
pages = {660-669},
title = {Total curvature and volume of foliations on the sphere S 2},
url = {http://eudml.org/doc/269540},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Amine Fawaz
TI - Total curvature and volume of foliations on the sphere S 2
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 660
EP - 669
AB - In this paper we study a curvature integral associated with a pair of orthogonal foliations on the Riemann sphere S 2 and we compute the minimal value of the volume of meromorphic foliations.
LA - eng
KW - Foliation; Geodesic curvature; Green’s function; Singular; Volume; foliation; geodesic curvature; Green's function; singular; volume
UR - http://eudml.org/doc/269540
ER -

References

top
  1. [1] Aubin T., Some nonlinear problems in Riemannian geometry, Springer-Verlag, Berlin, 1998 
  2. [2] Fabiano B., Pablo M.C., Naveira A.M., On the volume of unit vector fields on spaces of constant curvature, Comment. Math. Helv., 2004, 79, 300–316 http://dx.doi.org/10.1007/s00014-004-0802-4[Crossref] Zbl1057.53022
  3. [3] Fawaz A., Energy and foliations on Riemann surfaces, Ann. Global Anal. Geom., 2005, 28, 75–89 http://dx.doi.org/10.1007/s10455-005-4405-0[Crossref] 
  4. [4] Fathi A., Laudenbach F., Poenaru V., Travaux de Thurston sur les surfaces, Astérisque, 1979, vol. 66–67, SMF Paris (in French) 
  5. [5] Gutkin E., Newton P., The method of images and Green’s function for spherical domains, J. Phys. A: Math. Gen., 2004, 37, 11989–12003 http://dx.doi.org/10.1088/0305-4470/37/50/004[Crossref] Zbl1067.78005
  6. [6] Gil-Medrano O., Llinares-Fuster E., Second variation of volume and energy of vector fields. Stability of Hopf vector fields, Math. Ann., 2001, 320, 531–545 http://dx.doi.org/10.1007/PL00004485[Crossref] Zbl0989.53020
  7. [7] Gil-Medrano O., Llinares-Fuster E., Minimal unit vector fields, Tohoku Math. J., 2002, 54, 71–84 http://dx.doi.org/10.2748/tmj/1113247180[Crossref] Zbl1006.53053
  8. [8] Gluck H., Ziller W., On the volume of a unit vector field on the three sphere, Comment. Math. Helv., 1986, 61, 177–192 http://dx.doi.org/10.1007/BF02621910[Crossref] Zbl0605.53022
  9. [9] Johnson L.D., Volumes of flows, Proc. Amer. Math. Soc., 1988, 104, 923–932 http://dx.doi.org/10.2307/2046818[Crossref] Zbl0687.58031
  10. [10] Langevin R., Levitt G., Courbure totale des feuilletages des surfaces, Comment. Math. Helv., 1982, 57, 175–195 (in French) http://dx.doi.org/10.1007/BF02565855[Crossref] Zbl0502.53026
  11. [11] Pavlov V., Buisine D., Goncharov V., Formation of vortex clusters on a sphere, Nonlinear processes in geophysics, 2001, 8, 9–19 
  12. [12] Pedersen L.S., Volumes of vector fields on spheres, Trans. Amer. Math. Soc., 1993, 336, 69–78 http://dx.doi.org/10.2307/2154338[Crossref] 
  13. [13] Thurston W., Three-dimensional geometry and topology, 1, Princeton University Press, 1997 Zbl0873.57001
  14. [14] Tondeur P., Geometry of foliations, Monogr. Math., 90, Birkhäuser, 1997 Zbl0905.53002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.