An analogue of the Duistermaat-van der Kallen theorem for group algebras

Wenhua Zhao; Roel Willems

Open Mathematics (2012)

  • Volume: 10, Issue: 3, page 974-986
  • ISSN: 2391-5455

Abstract

top
Let G be a group, R an integral domain, and V G the R-subspace of the group algebra R[G] consisting of all the elements of R[G] whose coefficient of the identity element 1G of G is equal to zero. Motivated by the Mathieu conjecture [Mathieu O., Some conjectures about invariant theory and their applications, In: Algèbre non Commutative, Groupes Quantiques et Invariants, Reims, June 26–30, 1995, Sémin. Congr., 2, Société Mathématique de France, Paris, 1997, 263–279], the Duistermaat-van der Kallen theorem [Duistermaat J.J., van der Kallen W., Constant terms in powers of a Laurent polynomial, Indag. Math., 1998, 9(2), 221–231], and also by recent studies on the notion of Mathieu subspaces, we show that for finite groups G, V G also forms a Mathieu subspace of the group algebra R[G] when certain conditions on the base ring R are met. We also show that for the free abelian groups G = ℤn, n ≥ 1, and any integral domain R of positive characteristic, V G fails to be a Mathieu subspace of R[G], which is equivalent to saying that the Duistermaat-van der Kallen theorem cannot be generalized to any field or integral domain of positive characteristic.

How to cite

top

Wenhua Zhao, and Roel Willems. "An analogue of the Duistermaat-van der Kallen theorem for group algebras." Open Mathematics 10.3 (2012): 974-986. <http://eudml.org/doc/269550>.

@article{WenhuaZhao2012,
abstract = {Let G be a group, R an integral domain, and V G the R-subspace of the group algebra R[G] consisting of all the elements of R[G] whose coefficient of the identity element 1G of G is equal to zero. Motivated by the Mathieu conjecture [Mathieu O., Some conjectures about invariant theory and their applications, In: Algèbre non Commutative, Groupes Quantiques et Invariants, Reims, June 26–30, 1995, Sémin. Congr., 2, Société Mathématique de France, Paris, 1997, 263–279], the Duistermaat-van der Kallen theorem [Duistermaat J.J., van der Kallen W., Constant terms in powers of a Laurent polynomial, Indag. Math., 1998, 9(2), 221–231], and also by recent studies on the notion of Mathieu subspaces, we show that for finite groups G, V G also forms a Mathieu subspace of the group algebra R[G] when certain conditions on the base ring R are met. We also show that for the free abelian groups G = ℤn, n ≥ 1, and any integral domain R of positive characteristic, V G fails to be a Mathieu subspace of R[G], which is equivalent to saying that the Duistermaat-van der Kallen theorem cannot be generalized to any field or integral domain of positive characteristic.},
author = {Wenhua Zhao, Roel Willems},
journal = {Open Mathematics},
keywords = {The Duistermaat-van der Kallen Theorem char 180 Mathieu subspaces char 180 Groups algebras; Mathieu subspaces; group algebras; finite groups; Duistermaat-van der Kallen theorem},
language = {eng},
number = {3},
pages = {974-986},
title = {An analogue of the Duistermaat-van der Kallen theorem for group algebras},
url = {http://eudml.org/doc/269550},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Wenhua Zhao
AU - Roel Willems
TI - An analogue of the Duistermaat-van der Kallen theorem for group algebras
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 974
EP - 986
AB - Let G be a group, R an integral domain, and V G the R-subspace of the group algebra R[G] consisting of all the elements of R[G] whose coefficient of the identity element 1G of G is equal to zero. Motivated by the Mathieu conjecture [Mathieu O., Some conjectures about invariant theory and their applications, In: Algèbre non Commutative, Groupes Quantiques et Invariants, Reims, June 26–30, 1995, Sémin. Congr., 2, Société Mathématique de France, Paris, 1997, 263–279], the Duistermaat-van der Kallen theorem [Duistermaat J.J., van der Kallen W., Constant terms in powers of a Laurent polynomial, Indag. Math., 1998, 9(2), 221–231], and also by recent studies on the notion of Mathieu subspaces, we show that for finite groups G, V G also forms a Mathieu subspace of the group algebra R[G] when certain conditions on the base ring R are met. We also show that for the free abelian groups G = ℤn, n ≥ 1, and any integral domain R of positive characteristic, V G fails to be a Mathieu subspace of R[G], which is equivalent to saying that the Duistermaat-van der Kallen theorem cannot be generalized to any field or integral domain of positive characteristic.
LA - eng
KW - The Duistermaat-van der Kallen Theorem char 180 Mathieu subspaces char 180 Groups algebras; Mathieu subspaces; group algebras; finite groups; Duistermaat-van der Kallen theorem
UR - http://eudml.org/doc/269550
ER -

References

top
  1. [1] Bass H., Connell E., Wright D., The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 1982, 7(2), 287–330 http://dx.doi.org/10.1090/S0273-0979-1982-15032-7 Zbl0539.13012
  2. [2] Duistermaat J.J., van der Kallen W., Constant terms in powers of a Laurent polynomial, Indag. Math., 1998, 9(2), 221–231 http://dx.doi.org/10.1016/S0019-3577(98)80020-7 Zbl0916.22007
  3. [3] van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math., 190, Birkhäuser, Basel, 2000 Zbl0962.14037
  4. [4] van den Essen A., The amazing image conjecture, preprint available at http://arxiv.org/abs/1006.5801 Zbl1239.14052
  5. [5] van den Essen A., Willems R., Zhao W., Some results on the vanishing conjecture of differential operators with constant coefficients, preprint available at http://arxiv.org/abs/0903.1478 Zbl1317.33007
  6. [6] van den Essen A., Wright D., Zhao W., Images of locally finite derivations of polynomial algebras in two variables, J. Pure Appl. Algebra, 2011, 215(9), 2130–2134 http://dx.doi.org/10.1016/j.jpaa.2010.12.002 Zbl1229.13022
  7. [7] van den Essen A., Wright D., Zhao W., On the image conjecture, J. Algebra, 2011, 340, 211–224 http://dx.doi.org/10.1016/j.jalgebra.2011.04.036 Zbl1235.14057
  8. [8] van den Essen A., Zhao W., Mathieu subspaces of univariate polynomial algebras, preprint available at http://arxiv.org/abs/1012.2017 Zbl1279.13011
  9. [9] Francoise J.P., Pakovich F., Yomdin Y., Zhao W., Moment vanishing problem and positivity: some examples, Bull. Sci. Math., 2011, 135(1), 10–32 http://dx.doi.org/10.1016/j.bulsci.2010.06.002 Zbl1217.44008
  10. [10] Keller O.-H., Ganze Cremona-Transformationen, Monatsh. Math. Phys., 1939, 47(1), 299–306 http://dx.doi.org/10.1007/BF01695502 
  11. [11] Mathieu O., Some conjectures about invariant theory and their applications, In: Algèbre non Commutative, Groupes Quantiques et Invariants, Reims, June 26–30, 1995, Sémin. Congr., 2, Société Mathématique de France, Paris, 1997, 263–279 Zbl0889.22008
  12. [12] Passman D.S., The Algebraic Structure of Group Rings, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York-London-Sydney, 1977 Zbl0368.16003
  13. [13] Zhao W., Hessian nilpotent polynomials and the Jacobian conjecture, Trans. Amer. Math. Soc., 2007, 359(1), 249–274 http://dx.doi.org/10.1090/S0002-9947-06-03898-0 Zbl1109.14041
  14. [14] Zhao W., A vanishing conjecture on differential operators with constant coefficients, Acta Math. Vietnam., 2007, 32(2–3), 259–286 Zbl1139.14303
  15. [15] Zhao W., Images of commuting differential operators of order one with constant leading coefficients, J. Algebra, 2010, 324(2), 231–247 http://dx.doi.org/10.1016/j.jalgebra.2010.04.022 Zbl1197.14064
  16. [16] Zhao W., Generalizations of the image conjecture and the Mathieu conjecture, J. Pure Appl. Algebra, 2010, 214(7), 1200–1216 http://dx.doi.org/10.1016/j.jpaa.2009.10.007 Zbl1205.33017
  17. [17] Zhao W., A generalization of Mathieu subspaces to modules of associative algebras, Cent. Eur. J. Math., 2010, 8(6), 1132–1155 http://dx.doi.org/10.2478/s11533-010-0068-6 Zbl1256.16013
  18. [18] Zhao W., New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture, Proc. Amer. Math. Soc., 2011, 139(9), 3141–3154 http://dx.doi.org/10.1090/S0002-9939-2011-10744-5 Zbl1229.14042
  19. [19] Zhao W., Mathieu subspaces of associative algebras, J. Algebra, 2012, 350(2), 245–272 http://dx.doi.org/10.1016/j.jalgebra.2011.09.036 
  20. [20] http://en.wikipedia.org/wiki/Newton’s_identities 
  21. [21] http://en.wikipedia.org/wiki/Cayley-Hamilton_theorem 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.