On the nonlocal Cauchy problem for semilinear fractional order evolution equations
JinRong Wang; Yong Zhou; Michal Fečkan
Open Mathematics (2014)
- Volume: 12, Issue: 6, page 911-922
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Baleanu D., Machado J.A.T., Luo A.C.J. (Eds.), Fractional Dynamics and Control, Springer, New York, 2012
- [2] Boucherif A., Precup R., On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 2003, 4(2), 205–212 Zbl1050.34001
- [3] Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516 Zbl1154.34027
- [4] Boulite S., Idrissi A., Maniar L., Controllability of semilinear boundary problems with nonlocal initial conditions, J. Math. Anal. Appl., 2006, 316(2), 566–578 http://dx.doi.org/10.1016/j.jmaa.2005.05.006 Zbl1105.34036
- [5] Byszewski L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 1991, 162(2), 494–505 http://dx.doi.org/10.1016/0022-247X(91)90164-U Zbl0748.34040
- [6] Byszewski L., Lakshmikantham V., Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 1991, 40(1), 11–19 http://dx.doi.org/10.1080/00036819008839989 Zbl0694.34001
- [7] Chang Y.-K., Nieto J.J., Li W.-S., On impulsive hyperbolic differential inclusions with nonlocal initial conditions, J. Optim. Theory Appl., 2009, 140(3), 431–442 http://dx.doi.org/10.1007/s10957-008-9468-1 Zbl1159.49042
- [8] Deng K., Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 1993, 179(2), 630–637 http://dx.doi.org/10.1006/jmaa.1993.1373 Zbl0798.35076
- [9] Diethelm K., The Analysis of Fractional Differential Equations, Lecture Notes in Math., 2004, Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-14574-2
- [10] Dong X., Wang J., Zhou Y., On nonlocal problems for fractional differential equations in Banach spaces, Opuscula Math., 2011, 31(3), 341–357 http://dx.doi.org/10.7494/OpMath.2011.31.3.341 Zbl1228.26012
- [11] Fan Z., Impulsive problems for semilinear differential equations with nonlocal conditions, Nonlinear Anal., 2010, 72(2), 1104–1109 http://dx.doi.org/10.1016/j.na.2009.07.049 Zbl1188.34073
- [12] Fan Z., Li G., Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 2010, 258(5), 1709–1727 http://dx.doi.org/10.1016/j.jfa.2009.10.023 Zbl1193.35099
- [13] Fu X., Ezzinbi K., Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear Anal., 2003, 54(2), 215–227 http://dx.doi.org/10.1016/S0362-546X(03)00047-6 Zbl1034.34096
- [14] Jackson D., Existence and uniqueness of solutions to semilinear nonlocal parabolic equations, J. Math. Anal. Appl., 1993, 172(1), 256–265 http://dx.doi.org/10.1006/jmaa.1993.1022 Zbl0814.35060
- [15] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 http://dx.doi.org/10.1016/S0304-0208(06)80001-0
- [16] Lakshmikantham V., Leela S., Devi J.V., Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cottenham, 2009 Zbl1188.37002
- [17] Liang J., Liu J., Xiao T.-J., Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal. TMA, 1994, 57(2), 183–189 http://dx.doi.org/10.1016/j.na.2004.02.007 Zbl1083.34045
- [18] Liu H., Chang J.-C., Existence for a class of partial differential equations with nonlocal conditions, Nonlinear Anal., 2009, 70(9), 3076–3083 http://dx.doi.org/10.1016/j.na.2008.04.009 Zbl1170.34346
- [19] Michalski M.W., Derivatives of Noninteger Order and Their Applications, Dissertationes Math. (Rozprawy Mat.), 328, Polish Academy of Sciences, Warsaw, 1993 Zbl0880.26007
- [20] Miller K.S., Ross B., An introduction to the fractional calculus and differential equations, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1993 Zbl0789.26002
- [21] N’Guérékata G.M., A Cauchy problem for some fractional differential abstract differential equation with non local conditions, Nonlinear Anal., 2009, 70(5), 1873–1876 http://dx.doi.org/10.1016/j.na.2008.02.087 Zbl1166.34320
- [22] N’Guérékata G.M., Corrigendum: A Cauchy problem for some fractional differential equations, Commun. Math. Anal., 2009, 7(1), 11
- [23] Nica O., Initial value problems for first-order differential systems with general nonlocal conditions, Electron. J. Differential Equations, 2012, #74 Zbl1261.34016
- [24] Nica O., Precup R., On the nonlocal initial value problem for first order differential systems, Stud. Univ. Babe?-Bolyai Math., 2001, 56(3), 113–125
- [25] Ntouyas S.K., Tsamatos P.Ch., Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 1997, 210(2), 679–687 http://dx.doi.org/10.1006/jmaa.1997.5425
- [26] O’Regan D., Fixed-point theory for the sum of two operators, Appl. Math. Lett., 1996, 9(1), 1–8 http://dx.doi.org/10.1016/0893-9659(95)00093-3
- [27] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999
- [28] Smart D.R., Fixed Point Theorems, Cambridge Tracts in Math., 66, Cambridge University Press, London-New York, 1974
- [29] Tarasov V.E., Fractional Dynamics, Nonlinear Phys. Sci., Springer, Heidelberg, 2010 http://dx.doi.org/10.1007/978-3-642-14003-7
- [30] Tatar N., Existence results for an evolution problem with fractional nonlocal conditions, Comput. Math. Appl., 2010, 60(11), 2971–2982 http://dx.doi.org/10.1016/j.camwa.2010.09.057 Zbl1207.34099
- [31] Wang J., Zhou Y., A class of fractional evolution equations and optimal controls, Nonlinear Anal. Real World Appl., 2011, 12(1), 262–272 http://dx.doi.org/10.1016/j.nonrwa.2010.06.013 Zbl1214.34010
- [32] Wang J., Zhou Y., Analysis of nonlinear fractional control systems in Banach spaces, Nonlinear Anal., 2011, 74(17), 5929–5942 http://dx.doi.org/10.1016/j.na.2011.05.059 Zbl1223.93059
- [33] Wang J., Zhou Y., Fečkan M., Alternative results and robustness for fractional evolution equations with periodic boundary conditions, Electron. J. Qual. Theory Diff. Equ., 2011, #97 Zbl06528101
- [34] Wang J., Zhou Y., Fečkan M., Abstract Cauchy problem for fractional differential equations, Nonlinear Dynam., 2013, 71(4), 685–700 http://dx.doi.org/10.1007/s11071-012-0452-9 Zbl1268.34034
- [35] Xue X., Nonlinear differential equations with nonlocal conditions in Banach spaces, Nonlinear Anal., 2005, 63(4), 575–586 http://dx.doi.org/10.1016/j.na.2005.05.019 Zbl1095.34040
- [36] Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475 http://dx.doi.org/10.1016/j.nonrwa.2010.05.029 Zbl1260.34017
- [37] Zhou Y., Jiao F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3), 1063–1077 http://dx.doi.org/10.1016/j.camwa.2009.06.026 Zbl1189.34154