Numerical simulation of surface acoustic wave actuated cell sorting

Thomas Franke; Ronald Hoppe; Christopher Linsenmann; Kidist Zeleke

Open Mathematics (2013)

  • Volume: 11, Issue: 4, page 760-778
  • ISSN: 2391-5455

Abstract

top
We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer (IDT) close to the lateral wall of the separation channel for generation of the SAWs. The cells can be distinguished by fluorescence. The inflow velocities are tuned so that without SAW actuation a cell of type I leaves the device through a designated outflow channel. However, if a cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow so that the cell leaves the separation channel through the other outflow boundary. The motion of a cell in the carrier fluid is modeled by the Finite Element Immersed Boundary method (FE-IB). Numerical results are presented that illustrate the feasibility of the surface acoustic wave actuated cell sorting approach.

How to cite

top

Thomas Franke, et al. "Numerical simulation of surface acoustic wave actuated cell sorting." Open Mathematics 11.4 (2013): 760-778. <http://eudml.org/doc/269560>.

@article{ThomasFranke2013,
abstract = {We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer (IDT) close to the lateral wall of the separation channel for generation of the SAWs. The cells can be distinguished by fluorescence. The inflow velocities are tuned so that without SAW actuation a cell of type I leaves the device through a designated outflow channel. However, if a cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow so that the cell leaves the separation channel through the other outflow boundary. The motion of a cell in the carrier fluid is modeled by the Finite Element Immersed Boundary method (FE-IB). Numerical results are presented that illustrate the feasibility of the surface acoustic wave actuated cell sorting approach.},
author = {Thomas Franke, Ronald Hoppe, Christopher Linsenmann, Kidist Zeleke},
journal = {Open Mathematics},
keywords = {Surface acoustic wave actuated cell sorting; Biomedical micro-electro-mechanical system; Finite element immersed boundary method; surface acoustic wave actuated cell sorting; biomedical micro-electro-mechanical system; finite element immersed boundary method},
language = {eng},
number = {4},
pages = {760-778},
title = {Numerical simulation of surface acoustic wave actuated cell sorting},
url = {http://eudml.org/doc/269560},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Thomas Franke
AU - Ronald Hoppe
AU - Christopher Linsenmann
AU - Kidist Zeleke
TI - Numerical simulation of surface acoustic wave actuated cell sorting
JO - Open Mathematics
PY - 2013
VL - 11
IS - 4
SP - 760
EP - 778
AB - We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two outflow channels for separation, and an interdigital transducer (IDT) close to the lateral wall of the separation channel for generation of the SAWs. The cells can be distinguished by fluorescence. The inflow velocities are tuned so that without SAW actuation a cell of type I leaves the device through a designated outflow channel. However, if a cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow so that the cell leaves the separation channel through the other outflow boundary. The motion of a cell in the carrier fluid is modeled by the Finite Element Immersed Boundary method (FE-IB). Numerical results are presented that illustrate the feasibility of the surface acoustic wave actuated cell sorting approach.
LA - eng
KW - Surface acoustic wave actuated cell sorting; Biomedical micro-electro-mechanical system; Finite element immersed boundary method; surface acoustic wave actuated cell sorting; biomedical micro-electro-mechanical system; finite element immersed boundary method
UR - http://eudml.org/doc/269560
ER -

References

top
  1. [1] Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P., Molecular Biology of the Cell, 4th ed., Garland Science, New York, 2002 
  2. [2] Antil H., Glowinski R., Hoppe R.H.W., Linsenmann C., Pan T.-W., Wixforth A., Modeling, simulation, and optimization of surface acoustic wave driven microfluidic biochips, J. Comput. Math., 2010, 28(2), 149–169 Zbl1224.65008
  3. [3] Bekah D., Measurement of Viscoelastic Properties of Treated and Untreated Cancer Cells Using Passive Microrheology, MSc thesis, Ryerson University, Toronto, 2010, available at http://digitalcommons.ryerson.ca/dissertations/ 
  4. [4] Boffi D., Cavallini N., Gastaldi L., Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci., 2011, 21(12), 2523–2550 http://dx.doi.org/10.1142/S0218202511005829 Zbl1242.76190
  5. [5] Boffi D., Gastaldi L., A finite element approach for the immersed boundary method, Comput.&Structures, 2003, 81(8–11), 491–501 http://dx.doi.org/10.1016/S0045-7949(02)00404-2 
  6. [6] Boffi D., Gastaldi L., Heltai L., Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 2007, 17(10), 1479–1505 http://dx.doi.org/10.1142/S0218202507002352 Zbl1186.76661
  7. [7] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer, Berlin-Heidelberg-New York, 1991 Zbl0788.73002
  8. [8] Carey J.L., McCoy J.P., Keren D.F. (Eds.), Flow Cytometry in Clinical Diagnostics, 4th ed., American Society for Clinical Pathology Press, Chicago, 2007 
  9. [9] Cui H.-H., Voldman J., He X.-F., Lim K.-M., Separation of particles by pulsed dielectrophoresis, Lab on a Chip, 2009, 9(16), 2306–2312 http://dx.doi.org/10.1039/b906202e 
  10. [10] Eisenstein M., Cell sorting: divide and conquer, Nature, 2006, 441, 1179–1185 http://dx.doi.org/10.1038/4411179a 
  11. [11] Eringen A.C., Maugin G.A., Electrodynamics of Continua I, Springer, Berlin-Heidelberg-New York, 1990 http://dx.doi.org/10.1007/978-1-4612-3236-0 
  12. [12] Franke T., Braunmüller S., Frommelt T., Wixforth A., Sorting of solid and soft objects in vortices driven by surface acoustic waves, SPIE Proceedings, 2009, 7365, #73650O 
  13. [13] Franke T., Braunmüller S., Schmid L., Wixforth A., Weitz D.A., Surface acoustic wave actuated cell sorting (SAWACS), Lab on a Chip, 2010, 10(6), 789–794 http://dx.doi.org/10.1039/b915522h 
  14. [14] Franke T., Hoppe R.H.W., Linsenmann C., Schmid L., Willbold C., Wixforth A., Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows, Comput. Vis. Sci., 2011, 14(4), 167–180 http://dx.doi.org/10.1007/s00791-012-0172-1 Zbl06043244
  15. [15] Gantner A., Hoppe R.H.W., Köster D., Siebert K.G., Wixforth A., Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, Comput. Vis. Sci., 2007, 10(3), 145–161 http://dx.doi.org/10.1007/s00791-006-0040-y 
  16. [16] Hawley T.S., Hawley R.G. (Eds.), Flow Cytometry Protocols, 2nd ed., Methods in Molecular Biology, 263, Humana Press, Totowa, 2004 
  17. [17] Hoppe R.H.W., Linsenmann C., An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method, J. Comput. Phys., 2012, 231(14), 4676–4693 http://dx.doi.org/10.1016/j.jcp.2012.03.004 Zbl1245.76076
  18. [18] Maugin G.A., Continuum Mechanics of Electromagnetic Solids, North-Holland Ser. Appl. Math. Mech., 33, North-Holland, Amsterdam, 1988 
  19. [19] Pamme N., Continuous flow separations in microfluidic devices, Lab on a Chip, 2007, 7(12), 1644–1659 http://dx.doi.org/10.1039/b712784g 
  20. [20] Peskin C.S., Numerical analysis of flood flow in the heart, J. Comput. Phys., 1977, 25(3), 220–252 http://dx.doi.org/10.1016/0021-9991(77)90100-0 
  21. [21] Peskin C.S., The immersed boundary method, Acta Numer., 2002, 11, 479–517 http://dx.doi.org/10.1017/S0962492902000077 Zbl1123.74309
  22. [22] Petersson F., Åberg L., Swärd-Nilsson A.-M., Laurell T., Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation, Analytical Chemistry, 2007, 79(14), 5117–5123 http://dx.doi.org/10.1021/ac070444e 
  23. [23] Qu B.-Y., Wu Z.-Y., Fang F., Bai Z.-M., Yang D.-Z., Xu S.-K., A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling, Analytical and Bioanalytical Chemistry, 2008, 392(7–8), 1317–1324 http://dx.doi.org/10.1007/s00216-008-2382-4 
  24. [24] Seo J., Lean M.H., Kole A., Membrane-free microfiltration by asymmetrical inertial migration, Applied Physics Letters, 2007, 91(3), #033901 http://dx.doi.org/10.1063/1.2756272 
  25. [25] Shapiro H.M., Practical Flow Cytometry, John Wiley & Sons, Hoboken, 2003 http://dx.doi.org/10.1002/0471722731 
  26. [26] Shi J., Huang H., Stratton Z., Huang Y., Huang T.J., Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, 2009, 9(23), 3354–3359 http://dx.doi.org/10.1039/b915113c 
  27. [27] Shi J., Mao X., Ahmed D., Colletti A., Huang T.J., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW), Lab on a Chip, 2008, 8(2), 221–223 http://dx.doi.org/10.1039/b716321e 
  28. [28] Skalak R., Chien S., Handbook of Bioengineering, McGraw-Hill, New York, 1987 
  29. [29] Sklar L.A. (Ed.), Flow Cytometry for Biotechnology, Oxford University Press, New York, 2005 
  30. [30] Tartar L., An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital., 3, Springer, Berlin, 2007 Zbl1126.46001
  31. [31] Valero A., Braschler T., Demierre N., Renaud P., A miniaturized continuous dielectrophoretic cell sorter and its applications, Biomicrofluidics, 2010, 4(2), #022807 
  32. [32] Zborowski M., Chalmers J.J., Magnetic cell sorting, In: Immunochemical Protocols, Methods in Molecular Biology, 295, Humana Press, New York, 2005, 291–300 http://dx.doi.org/10.1385/1-59259-873-0:291 
  33. [33] Zhu J., Xuan X., Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels, Biomicrofluidics, 2011, 5(2), #024111 http://dx.doi.org/10.1063/1.3599883 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.