Analytic normal basis theorem

Victor Alexandru; Nicolae Popescu; Alexandru Zaharescu

Open Mathematics (2008)

  • Volume: 6, Issue: 3, page 351-356
  • ISSN: 2391-5455

Abstract

top
Let p be a prime number, ℚp the field of p-adic numbers, and ¯ p a fixed algebraic closure of ℚp. We provide an analytic version of the normal basis theorem which holds for normal extensions of intermediate fields ℚp ⊆ K ⊆ L ⊆ ¯ p .

How to cite

top

Victor Alexandru, Nicolae Popescu, and Alexandru Zaharescu. "Analytic normal basis theorem." Open Mathematics 6.3 (2008): 351-356. <http://eudml.org/doc/269562>.

@article{VictorAlexandru2008,
abstract = {Let p be a prime number, ℚp the field of p-adic numbers, and \[ \bar\{\mathbb \{Q\}\}\_p \] a fixed algebraic closure of ℚp. We provide an analytic version of the normal basis theorem which holds for normal extensions of intermediate fields ℚp ⊆ K ⊆ L ⊆ \[ \bar\{\mathbb \{Q\}\}\_p \] .},
author = {Victor Alexandru, Nicolae Popescu, Alexandru Zaharescu},
journal = {Open Mathematics},
keywords = {p-adic fields; normal bases; Normal bases; -adic fields},
language = {eng},
number = {3},
pages = {351-356},
title = {Analytic normal basis theorem},
url = {http://eudml.org/doc/269562},
volume = {6},
year = {2008},
}

TY - JOUR
AU - Victor Alexandru
AU - Nicolae Popescu
AU - Alexandru Zaharescu
TI - Analytic normal basis theorem
JO - Open Mathematics
PY - 2008
VL - 6
IS - 3
SP - 351
EP - 356
AB - Let p be a prime number, ℚp the field of p-adic numbers, and \[ \bar{\mathbb {Q}}_p \] a fixed algebraic closure of ℚp. We provide an analytic version of the normal basis theorem which holds for normal extensions of intermediate fields ℚp ⊆ K ⊆ L ⊆ \[ \bar{\mathbb {Q}}_p \] .
LA - eng
KW - p-adic fields; normal bases; Normal bases; -adic fields
UR - http://eudml.org/doc/269562
ER -

References

top
  1. [1] Alexandru V., Popescu E.L., Popescu N., On the continuity of the trace, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 2004, 5, 117–122 Zbl1150.11438
  2. [2] Alexandru V., Popescu N., Zaharescu A., On the closed subfields of ℂp, J. Number Theory, 1998, 68, 131–150 http://dx.doi.org/10.1006/jnth.1997.2198 Zbl0901.11035
  3. [3] Alexandru V., Popescu N., Zaharescu A., Trace on ℂp, J. Number Theory, 2001, 88, 13–48 http://dx.doi.org/10.1006/jnth.2000.2610 
  4. [4] Andronescu S.C., On some subrings of ˜ p , Rev. Roumanie Math. Pures Appl., 2003, 48, 343–351 Zbl1100.13033
  5. [5] Ax J., Zeros of polynomials over local fields-The Galois action, J. Algebra, 1970, 15, 417–428 http://dx.doi.org/10.1016/0021-8693(70)90069-4 
  6. [6] Jacobson N., Lectures in abstract algebra Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964 Zbl0124.27002
  7. [7] Popescu N., Vâjâitu M., Zaharescu A., On the existence of trace for elements of ℂp, Algebr. Represent. Theory, 2006, 9, 47–66 http://dx.doi.org/10.1007/s10468-005-9003-0 Zbl1138.11054
  8. [8] Sen S., On automorphisms of local fields, Ann. of Math., 1969, 90, 33–46 http://dx.doi.org/10.2307/1970680 Zbl0199.36301
  9. [9] Tate J.T., p - divisible groups, Proc. Conf. Local Fields (1966 Driebergen), Springer, Berlin, 1967, 158–183 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.