κ-compactness, extent and the Lindelöf number in LOTS
David Buhagiar; Emmanuel Chetcuti; Hans Weber
Open Mathematics (2014)
- Volume: 12, Issue: 8, page 1249-1264
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Birkhoff G., Lattice Theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., 25, American Mathematical Society, Providence, 1995
- [2] Buhagiar D., Miwa T., On superparacompact and Lindelöf GO-spaces, Houston J. Math., 1998, 24(3), 443–457 Zbl0977.54019
- [3] Faber M.J., Metrizability in Generalized Ordered Spaces, Math. Centre Tracts, 53, Mathematisch Centrum, Amsterdam, 1974 Zbl0282.54017
- [4] Lutzer D., On Generalized Ordered Spaces, Dissertationes Math. (Rozprawy Mat.), 89, Polish Academy of Sciences, Warsaw, 1971
- [5] Miwa T., Kemoto N., Linearly ordered extensions of GO-spaces, Topology Appl., 1993, 54(1–3), 133–140 http://dx.doi.org/10.1016/0166-8641(93)90057-K Zbl0808.54022
- [6] Nagata J., Modern General Topology, 2nd ed., North-Holland Math. Library, 33, North-Holland, Amsterdam, 1985 Zbl0598.54001
- [7] Stephenson R.M. Jr., Initially κ-compact and related spaces, In: Handbook of Set-Theoretic Topology, North-Holland, 1984, 603–632