On the sum of digits of some sequences of integers

Javier Cilleruelo; Florian Luca; Juanjo Rué; Ana Zumalacárregui

Open Mathematics (2013)

  • Volume: 11, Issue: 1, page 188-195
  • ISSN: 2391-5455

Abstract

top
Let b ≥ 2 be a fixed positive integer. We show for a wide variety of sequences {a n}n=1∞ that for almost all n the sum of digits of a n in base b is at least c b log n, where c b is a constant depending on b and on the sequence. Our approach covers several integer sequences arising from number theory and combinatorics.

How to cite

top

Javier Cilleruelo, et al. "On the sum of digits of some sequences of integers." Open Mathematics 11.1 (2013): 188-195. <http://eudml.org/doc/269574>.

@article{JavierCilleruelo2013,
abstract = {Let b ≥ 2 be a fixed positive integer. We show for a wide variety of sequences \{a n\}n=1∞ that for almost all n the sum of digits of a n in base b is at least c b log n, where c b is a constant depending on b and on the sequence. Our approach covers several integer sequences arising from number theory and combinatorics.},
author = {Javier Cilleruelo, Florian Luca, Juanjo Rué, Ana Zumalacárregui},
journal = {Open Mathematics},
keywords = {Sum of digits; Bell numbers; sum of digits},
language = {eng},
number = {1},
pages = {188-195},
title = {On the sum of digits of some sequences of integers},
url = {http://eudml.org/doc/269574},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Javier Cilleruelo
AU - Florian Luca
AU - Juanjo Rué
AU - Ana Zumalacárregui
TI - On the sum of digits of some sequences of integers
JO - Open Mathematics
PY - 2013
VL - 11
IS - 1
SP - 188
EP - 195
AB - Let b ≥ 2 be a fixed positive integer. We show for a wide variety of sequences {a n}n=1∞ that for almost all n the sum of digits of a n in base b is at least c b log n, where c b is a constant depending on b and on the sequence. Our approach covers several integer sequences arising from number theory and combinatorics.
LA - eng
KW - Sum of digits; Bell numbers; sum of digits
UR - http://eudml.org/doc/269574
ER -

References

top
  1. [1] Bender E.A., Gao Z., Asymptotic enumeration of labelled graphs with a given genus, Electron. J. Combin., 2011, 18(1), #P13 Zbl1205.05013
  2. [2] Chapuy G., Fusy É., Giménez O., Mohar B., Noy M., Asymptotic enumeration and limit laws for graphs of fixed genus, J. Combin. Theory Ser. A, 2011, 118(3), 748–777 http://dx.doi.org/10.1016/j.jcta.2010.11.014 Zbl1231.05179
  3. [3] Cilleruelo J., Squares in (12 + 1) … (n 2 + 1), J. Number Theory, 2008, 128(8), 2488–2491 http://dx.doi.org/10.1016/j.jnt.2007.11.001 Zbl1213.11057
  4. [4] Evertse J.-H., Schlickewei H.P., Schmidt W.M., Linear equations in variables which lie in a multiplicative group, Ann. of Math., 2002, 155(2), 807–836 http://dx.doi.org/10.2307/3062133 Zbl1026.11038
  5. [5] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, Cambridge, 2009 http://dx.doi.org/10.1017/CBO9780511801655 
  6. [6] Giménez O., Noy M., Asymptotic enumeration and limit laws of planar grahs, J. Amer. Math. Soc., 2009, 22(2), 309–329 http://dx.doi.org/10.1090/S0894-0347-08-00624-3 Zbl1206.05019
  7. [7] Giménez O., Noy M., Rué J., Graph classes with given 3-connected components: asymptotic enumeration and random graphs, Random Structures Algorithms (in press) Zbl1269.05060
  8. [8] Knopfmacher A., Luca F., Digit sums of binomial sums, J. Number Theory, 2012, 132(2), 324–331 http://dx.doi.org/10.1016/j.jnt.2011.07.004 Zbl1261.11005
  9. [9] Luca F., Distinct digits in base b expansions of linear recurrence sequences, Quaest. Math., 2000, 23(4), 389–404 http://dx.doi.org/10.2989/16073600009485986 Zbl1030.11004
  10. [10] Luca F., The number of non-zero digits of n!, Canad. Math. Bull., 2002, 45(1), 115–118 http://dx.doi.org/10.4153/CMB-2002-013-9 Zbl1043.11008
  11. [11] Luca F., On the number of nonzero digits of the partition function, Arch. Math. (Basel), 2012, 98(3), 235–240 http://dx.doi.org/10.1007/s00013-011-0350-2 Zbl1333.11009
  12. [12] Luca F., Shparlinski I.E., On the g-ary expansions of Apéry, Motzkin, Schröder and other combinatorial numbers, Ann. Comb., 2010, 14(4), 507–524 http://dx.doi.org/10.1007/s00026-011-0074-9 Zbl1233.05020
  13. [13] Luca F., Shparlinski I.E., On the g-ary expansions of middle binomial coefficients and Catalan numbers, Rocky Mountain J. Math., 2011, 41(4), 1291–1301 http://dx.doi.org/10.1216/RMJ-2011-41-4-1291 Zbl1221.11020
  14. [14] Stewart C.L., On the representation of an integer in two different bases, J. Reine Angew. Math., 1980, 319, 63–72 Zbl0426.10008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.