Backward solutions to nonlinear integro-differential systems

Yuzhen Bai

Open Mathematics (2010)

  • Volume: 8, Issue: 4, page 807-815
  • ISSN: 2391-5455

Abstract

top
In this paper, we show the backward uniqueness in time of solutions to nonlinear integro-differential systems with Neumann or Dirichlet boundary conditions. We also discuss reasonable physical interpretations for our conclusions.

How to cite

top

Yuzhen Bai. "Backward solutions to nonlinear integro-differential systems." Open Mathematics 8.4 (2010): 807-815. <http://eudml.org/doc/269584>.

@article{YuzhenBai2010,
abstract = {In this paper, we show the backward uniqueness in time of solutions to nonlinear integro-differential systems with Neumann or Dirichlet boundary conditions. We also discuss reasonable physical interpretations for our conclusions.},
author = {Yuzhen Bai},
journal = {Open Mathematics},
keywords = {Backward uniqueness; p-Laplacian integro-differential system; Convex function; backward uniqueness; -Laplacian integro-differential system; convex function},
language = {eng},
number = {4},
pages = {807-815},
title = {Backward solutions to nonlinear integro-differential systems},
url = {http://eudml.org/doc/269584},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Yuzhen Bai
TI - Backward solutions to nonlinear integro-differential systems
JO - Open Mathematics
PY - 2010
VL - 8
IS - 4
SP - 807
EP - 815
AB - In this paper, we show the backward uniqueness in time of solutions to nonlinear integro-differential systems with Neumann or Dirichlet boundary conditions. We also discuss reasonable physical interpretations for our conclusions.
LA - eng
KW - Backward uniqueness; p-Laplacian integro-differential system; Convex function; backward uniqueness; -Laplacian integro-differential system; convex function
UR - http://eudml.org/doc/269584
ER -

References

top
  1. [1] Amadori A.L., Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach, Differential Integral Equations, 2003, 16(7), 787–811 Zbl1052.35083
  2. [2] Dafermos C.M., An abstract Volterra equation with application to linear viscoelasticity, J. Differential Equations, 1970, 7, 554–569 http://dx.doi.org/10.1016/0022-0396(70)90101-4[Crossref] 
  3. [3] Dzhangveladze T.A., The first boundary value problem for a nonlinear equation of parabolic type, Soviet Phys. Dokl., 1983, 28(4), 323–324 Zbl0538.35045
  4. [4] Dzhangveladze T.A., A nonlinear integro-differential equation of parabolic type, Differ. Equ., 1985, 21, 32–36 Zbl0595.45022
  5. [5] Dzhangveladze T.A., Kiguradze Z.V., On the stabilization of solutions of an initial-boundary value problem for a nonlinear integro-differential equation, Diff. Equ., 2007, 43(6), 854–861 http://dx.doi.org/10.1134/S0012266107060110[Crossref] Zbl1136.78018
  6. [6] Dzhangveladze T.A., Kiguradze Z.V., Asymptotic behavior of the solution of a nonlinear integrodifferential diffusion equation, Diff. Equ., 2008, 44(4), 538–550 http://dx.doi.org/10.1134/S0012266108040083[Crossref] Zbl1172.35500
  7. [7] Engler H., On Some Parabolic Integro-Differential Equations: Existence and Asymptotics of Solutions, Lecture Notes in Math., 1017, Springer, Berlin, 1983 
  8. [8] Engler H., Global smooth solutions for a class of parabolic integrodifferential equations, Trans. Amer. Math. Soc., 1996, 348(1), 267–290 http://dx.doi.org/10.1090/S0002-9947-96-01472-9[Crossref] Zbl0848.45002
  9. [9] Evans L.C., Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, 1998 Zbl0902.35002
  10. [10] Fila M., Pulkkinen A., Backward selfsimilar solutions of supercritical parabolic equations, Appl. Math. Lett., 2009, 22(6), 897–901 http://dx.doi.org/10.1016/j.aml.2008.07.018[Crossref] Zbl1173.35547
  11. [11] Gordeziani D.G., Dzhangveladze T.A., Korshiya T.K., Existence and uniqueness of the solution of a class of nonlinear parabolic problems, Diff. Equ., 1983, 19, 887–895 Zbl0582.35065
  12. [12] Gripenberg G., Global existence of solutions of Volterra integro-differential equations of parabolic type, J. Differential Equations, 1993, 102(2), 382–390 http://dx.doi.org/10.1006/jdeq.1993.1035[Crossref] 
  13. [13] Hoff D., Tsyganov E., Time analyticity and backward uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, J. Differential Equations, 2008, 245(10), 3068–3094 http://dx.doi.org/10.1016/j.jde.2008.08.006[Crossref][WoS] Zbl05365162
  14. [14] Jangveladze T.A., Kiguradze Z.V., Asymptotics of a solution of a nonlinear system of diffusion of a magnetic field into a substance, Siberian Math. J., 2006, 47(5), 867–878 http://dx.doi.org/10.1007/s11202-006-0095-5[Crossref] Zbl1150.45316
  15. [15] Jangveladze T., Kiguradze Z., Neta B., Large time behavior of solutions to a nonlinear integro-differential system, J. Math. Anal. Appl., 2009, 351(1), 382–391 http://dx.doi.org/10.1016/j.jmaa.2008.10.016[Crossref] Zbl1172.35330
  16. [16] Lions J.-L., Magenes E., Non-homogeneous Boundary Value Problems and Applications, Vol. 1, Springer, Berlin, 1972 Zbl0223.35039
  17. [17] Renardy M., Hrusa W.J., Nohel J.A., Mathematical Problems in Viscoelasticity, Wiley&Sons, New York, 1987 Zbl0719.73013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.