# Codes that attain minimum distance in every possible direction

Gyula Katona; Attila Sali; Klaus-Dieter Schewe

Open Mathematics (2008)

- Volume: 6, Issue: 1, page 1-11
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topGyula Katona, Attila Sali, and Klaus-Dieter Schewe. "Codes that attain minimum distance in every possible direction." Open Mathematics 6.1 (2008): 1-11. <http://eudml.org/doc/269591>.

@article{GyulaKatona2008,

abstract = {The following problem motivated by investigation of databases is studied. Let \[ \mathcal \{C\} \]
be a q-ary code of length n with the properties that \[ \mathcal \{C\} \]
has minimum distance at least n − k + 1, and for any set of k − 1 coordinates there exist two codewords that agree exactly there. Let f(q, k)be the maximum n for which such a code exists. f(q, k)is bounded by linear functions of k and q, and the exact values for special k and qare determined.},

author = {Gyula Katona, Attila Sali, Klaus-Dieter Schewe},

journal = {Open Mathematics},

keywords = {Error correcting codes; database; functional dependency; key dependency; extremal problems of codes},

language = {eng},

number = {1},

pages = {1-11},

title = {Codes that attain minimum distance in every possible direction},

url = {http://eudml.org/doc/269591},

volume = {6},

year = {2008},

}

TY - JOUR

AU - Gyula Katona

AU - Attila Sali

AU - Klaus-Dieter Schewe

TI - Codes that attain minimum distance in every possible direction

JO - Open Mathematics

PY - 2008

VL - 6

IS - 1

SP - 1

EP - 11

AB - The following problem motivated by investigation of databases is studied. Let \[ \mathcal {C} \]
be a q-ary code of length n with the properties that \[ \mathcal {C} \]
has minimum distance at least n − k + 1, and for any set of k − 1 coordinates there exist two codewords that agree exactly there. Let f(q, k)be the maximum n for which such a code exists. f(q, k)is bounded by linear functions of k and q, and the exact values for special k and qare determined.

LA - eng

KW - Error correcting codes; database; functional dependency; key dependency; extremal problems of codes

UR - http://eudml.org/doc/269591

ER -

## References

top- [1] Abiteboul S., Hull R., Vianu V., Foundations of databases, Addison-Wesley, 1995 Zbl0848.68031
- [2] Armstrong W.W., Dependency structures of data base relationships, Information Processing, 1974, 74, 580–583
- [3] Demetrovics J., On the equivalence of candidate keys with Sperner systems, Acta Cybernet., 1978/79, 4, 247–252 Zbl0427.68072
- [4] Demetrovics J., Füredi Z., Katona G.O.H., Minimum matrix representation of closure operations, Discrete Appl. Math., 1985, 11, 115–128 http://dx.doi.org/10.1016/S0166-218X(85)80003-2 Zbl0577.68084
- [5] Demetrovics J., Gyepesi G., A note on minimal matrix representation of closure operations, Combinatorica, 1983, 3, 177–179 http://dx.doi.org/10.1007/BF02579291 Zbl0526.06004
- [6] Demetrovics J., Katona G.O.H., Extremal combinatorial problems in relational data base, In: Fundamentals of computation theory, Springer-Verlag, Berlin-New York, 1981 Zbl0466.68086
- [7] Demetrovics J., Katona G.O.H., Sali A., The characterization of branching dependencies, Discrete Appl. Math., 1992, 40, 139–153 http://dx.doi.org/10.1016/0166-218X(92)90027-8 Zbl0767.68030
- [8] Demetrovics J., Katona G.O.H., Sali A., Design type problems motivated by database theory, J. Statist. Plann. Inference, 1998, 72, 149–164 http://dx.doi.org/10.1016/S0378-3758(98)00029-9 Zbl0932.68038
- [9] Demetrovics J., Katona G.O.H., A survey of some combinatorial results concerning functional dependencies in database relations, Ann. Math. Artificial Intelligence, 1993, 7, 63–82 http://dx.doi.org/10.1007/BF01556350 Zbl1034.68513
- [10] Fagin R., Horn clauses and database dependencies, J. Assoc. Comput. Mach., 1982, 29, 952–985 Zbl0493.68092
- [11] Füredi Z., Perfect error-correcting databases, Discrete Appl. Math., 1990, 28, 171–176 http://dx.doi.org/10.1016/0166-218X(90)90114-R Zbl0738.05071
- [12] Hartmann S., Link S., Schewe K.-D., Weak functional dependencies in higher-order datamodels, In: Seipel D., Turull Torres J. M. (Eds.), Foundations of Information and Knowledge Systems, Springer LNCS, 2942, Springer Verlag, 2004 Zbl1202.68141
- [13] Odlyzko A.M., Asymptotic enumeration methods, In: Graham R.L, Crbtschel M., Lovász L. (Eds.), Handbook of combinatorics, Elsevier, Amsterdam, 1995 Zbl0845.05005
- [14] Sali A., Minimal keys in higher-order datamodels, In: Seipel D., Turull Torres J. M. (Eds.), Foundations of Information and Knowledge Systems, Springer LNCS, 2942, Springer Verlag, 2004 Zbl1202.68149
- [15] Sali A., Schewe K.-D., Counter-free keys and functional dependencies in higher-order datamodels, Fund. Inform., 2006, 70, 277–301 Zbl1101.68526
- [16] Sali A., Schewe K.-D., Keys and Armstrong databases in trees with restructuring, Acta Cybernet., preprint Zbl1164.68335
- [17] Silva A.M., Melkanoff M.A., A method for helping discover the dependencies of a relation, In: Gallaire H., Minker J., Nicolas J.-M. (Eds.), Advances in Data Base Theory, Plenum Publishing, New York, 1981
- [18] Turán P., On an extremal problem in graph theory, Mat. Fiz. Lapok, 1941, 48, 436–452 (in Hungarian)

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.