Closure of dilates of shift-invariant subspaces

Moisés Soto-Bajo

Open Mathematics (2013)

  • Volume: 11, Issue: 10, page 1785-1799
  • ISSN: 2391-5455

Abstract

top
Let V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a point of A*-approximate continuity of the Fourier transform of any semiorthogonal tight frame wavelet if we assume this value to be zero.

How to cite

top

Moisés Soto-Bajo. "Closure of dilates of shift-invariant subspaces." Open Mathematics 11.10 (2013): 1785-1799. <http://eudml.org/doc/269595>.

@article{MoisésSoto2013,
abstract = {Let V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a point of A*-approximate continuity of the Fourier transform of any semiorthogonal tight frame wavelet if we assume this value to be zero.},
author = {Moisés Soto-Bajo},
journal = {Open Mathematics},
keywords = {Multiresolution analysis; Generalized multiresolution analysis; Spectral function; Fourier transform; Approximate continuity; multiresolution analysis; generalized multiresolution analysis; spectral function; approximate continuity},
language = {eng},
number = {10},
pages = {1785-1799},
title = {Closure of dilates of shift-invariant subspaces},
url = {http://eudml.org/doc/269595},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Moisés Soto-Bajo
TI - Closure of dilates of shift-invariant subspaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 10
SP - 1785
EP - 1799
AB - Let V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a point of A*-approximate continuity of the Fourier transform of any semiorthogonal tight frame wavelet if we assume this value to be zero.
LA - eng
KW - Multiresolution analysis; Generalized multiresolution analysis; Spectral function; Fourier transform; Approximate continuity; multiresolution analysis; generalized multiresolution analysis; spectral function; approximate continuity
UR - http://eudml.org/doc/269595
ER -

References

top
  1. [1] Auscher P., Solution of two problems on wavelets, J. Geom. Anal., 1995, 5(2), 181–236 http://dx.doi.org/10.1007/BF02921675[Crossref] Zbl0843.42015
  2. [2] Baggett L.W., Medina H.A., Merrill K.D., Generalized multi-resolution analyses and a construction procedure for all wavelet sets in ℂn, J. Fourier Anal. Appl., 1999, 5(6), 563–573 http://dx.doi.org/10.1007/BF01257191[Crossref] Zbl0972.42021
  3. [3] Battle G., Phase space localization theorem for ondelettes, J. Math. Phys., 1989, 30(10), 2195–2196 http://dx.doi.org/10.1063/1.528544[Crossref] Zbl0694.46006
  4. [4] de Boor C., DeVore R.A., Ron A., On the construction of multivariate (pre)wavelets, Constr. Approx., 1993, 9(2–3), 123–166 http://dx.doi.org/10.1007/BF01198001[Crossref] Zbl0773.41013
  5. [5] de Boor C., DeVore R.A., Ron A., The structure of finitely generated shift-invariant spaces in L 2(ℂd), J. Funct. Anal., 1994, 119(1), 37–78 http://dx.doi.org/10.1006/jfan.1994.1003[Crossref] 
  6. [6] Bownik M., The structure of shift-invariant subspaces of L 2(ℂd), J. Funct. Anal., 2000, 177(2), 282–309 http://dx.doi.org/10.1006/jfan.2000.3635[Crossref] 
  7. [7] Bownik M., Intersection of dilates of shift-invariant spaces, Proc. Amer. Math. Soc., 2009, 137(2), 563–572 http://dx.doi.org/10.1090/S0002-9939-08-09682-2[Crossref] Zbl1162.42016
  8. [8] Bownik M., Rzeszotnik Z., The spectral function of shift-invariant spaces, Michigan Math. J., 2003, 51(2), 387–414 http://dx.doi.org/10.1307/mmj/1060013204[Crossref] Zbl1059.42021
  9. [9] Bownik M., Rzeszotnik Z., Speegle D., A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal., 2001, 10(1), 71–92 http://dx.doi.org/10.1006/acha.2000.0327[Crossref] Zbl0979.42018
  10. [10] Brandolini L., Garrigós G., Rzeszotnik Z., Weiss G., The behaviour at the origin of a class of band-limited wavelets, In: The Functional and Harmonic Analysis of Wavelets and Frames, San Antonio, January 13–14, 1999, Contemp. Math., 247, American Mathematical Society, Providence, 1999, 75–91 http://dx.doi.org/10.1090/conm/247/03798[Crossref] Zbl0956.42023
  11. [11] Calogero A., Wavelets on general lattices, associated with general expanding maps of ℂd, Electron. Res. Announc. Amer. Math. Soc., 1999, 5, 1–10 http://dx.doi.org/10.1090/S1079-6762-99-00054-2[Crossref] Zbl0914.42026
  12. [12] Cifuentes P., Kazarian K.S., San Antolín A., Characterization of scaling functions in a multiresolution analysis, Proc. Amer. Math. Soc., 2005, 133(4), 1013–1023 http://dx.doi.org/10.1090/S0002-9939-04-07786-X[Crossref] Zbl1065.42022
  13. [13] Cifuentes P., Kazarian K.S., San Antolín A., Characterization of scaling functions, In: Wavelets and Splines, Athens, GA, May 16–19, 2005, Mod. Methods Math., Nashboro Press, Brentwood, 2006, 152–163 Zbl1099.65144
  14. [14] Curry E., Low-pass filters and scaling functions for multivariable wavelets, Canad. J. Math., 2008, 60(2), 334–347 http://dx.doi.org/10.4153/CJM-2008-016-1[WoS][Crossref] Zbl1221.42060
  15. [15] Dai X., Diao Y., Gu Q., Subspaces with normalized tight frame wavelets in ℝ, Proc. Amer. Math. Soc., 2002, 130(6), 1661–1667 http://dx.doi.org/10.1090/S0002-9939-01-06257-8[Crossref] Zbl1004.42024
  16. [16] Dai X., Diao Y., Gu Q., Han D., Frame wavelets in subspaces of L 2(ℝd), Proc. Amer. Math. Soc., 2002, 130(11), 3259–3267 http://dx.doi.org/10.1090/S0002-9939-02-06498-5[Crossref] Zbl1004.42025
  17. [17] Dai X., Diao Y., Gu Q., Han D., The existence of subspace wavelet sets, J. Comput. Appl. Math., 2003, 155(1), 83–90 http://dx.doi.org/10.1016/S0377-0427(02)00893-2[Crossref] Zbl1016.42020
  18. [18] Dai X., Larson D.R., Speegle D.M., Wavelet sets in ℝd. II, In: Wavelets, Multiwavelets, and their Applications, San Diego, January 1997, Contemp. Math., 216, American Mathematical Society, Providence, 1998, 15–40 http://dx.doi.org/10.1090/conm/216/02962[Crossref] 
  19. [19] Dai X., Lu S., Wavelets in subspaces, Michigan Math. J., 1996, 43(1), 81–98 http://dx.doi.org/10.1307/mmj/1029005391[Crossref] 
  20. [20] Daubechies I., Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics, Philadelphia, 1992 http://dx.doi.org/10.1137/1.9781611970104[Crossref] 
  21. [21] Dobric V., Gundy R., Hitczenko P., Characterizations of orthonormal scale functions: a probabilistic approach, J. Geom. Anal., 2000, 10(3), 417–434 http://dx.doi.org/10.1007/BF02921943[Crossref] Zbl0986.42021
  22. [22] Dutkay D.E., Some equations relating multiwavelets and multiscaling functions, J. Funct. Anal., 2005, 226(1), 1–20 http://dx.doi.org/10.1016/j.jfa.2005.01.015[Crossref] Zbl1079.42025
  23. [23] Gu Q., Han D., On multiresolution analysis (MRA) wavelets in ℝd, J. Fourier Anal. Appl., 2000, 6(4), 437–447 http://dx.doi.org/10.1007/BF02510148[Crossref] Zbl0964.42021
  24. [24] Gu Q., Han D., Frames, modular functions for shift-invariant subspaces and FMRA wavelet frames, Proc. Amer. Math. Soc., 2005, 133(3), 815–825 http://dx.doi.org/10.1090/S0002-9939-04-07601-4[Crossref] Zbl1060.42027
  25. [25] Ha Y.-H., Kang H., Lee J., Seo J.K., Unimodular wavelets for L 2 and the Hardy space H 2, Michigan Math. J., 1994, 41(2), 345–361 http://dx.doi.org/10.1307/mmj/1029005001[Crossref] Zbl0810.42016
  26. [26] Hernández E., Wang X., Weiss G., Characterization of wavelets, scaling functions and wavelets associated with multiresolution analyses, In: Function Spaces, Interpolation Spaces, and Related Topics, Haifa, June 7–13, 1995, Israel Math. Conf. Proc., 13, Bar-Ilan University, Ramat Gan, 1999, 51–87 Zbl1057.42503
  27. [27] Hernández E., Weiss G., A First Course on Wavelets, Stud. Adv. Math., CRC Press, Boca Raton, 1996 [Crossref] Zbl0885.42018
  28. [28] Jia R.Q., Shen Z., Multiresolution and wavelets, Proc. Edinburgh Math. Soc., 1994, 37(2), 271–300 http://dx.doi.org/10.1017/S0013091500006076[Crossref] Zbl0809.42018
  29. [29] Kazarian K.S., San Antolín A., Characterization of scaling functions in a frame multiresolution analysis in H G2, In: Topics in Classical Analysis and Applications in Honor of Daniel Waterman, World Scientific, Hackensack, 2008, 118–140 http://dx.doi.org/10.1142/9789812834447_0009[Crossref] 
  30. [30] Kim H.O., Kim R.Y., Lim J.K., On the spectrums of frame multiresolution analyses, J. Math. Anal. Appl., 2005, 305(2), 528–545 http://dx.doi.org/10.1016/j.jmaa.2004.11.050[Crossref] Zbl1061.42018
  31. [31] Kim H.O., Lim J.K., Frame multiresolution analysis, Commun. Korean Math. Soc., 2000, 15(2), 285–308 Zbl0966.42023
  32. [32] Lian Q.-F., Li Y.-Z., Reducing subspace frame multiresolution analysis and frame wavelets, Commun. Pure Appl. Anal., 2007, 6(3), 741–756 http://dx.doi.org/10.3934/cpaa.2007.6.741[Crossref] 
  33. [33] Lorentz R.A., Madych W.R., Sahakian A., Translation and dilation invariant subspaces of L 2(ℝ) and multiresolution analyses, Appl. Comput. Harmon. Anal., 1998, 5(4), 375–388 http://dx.doi.org/10.1006/acha.1998.0235[Crossref] Zbl0926.42020
  34. [34] Madych W.R., Some elementary properties of multiresolution analyses of L 2(ℝn), In: Wavelets, Wavelet Anal. Appl., 2, Academic Press, Boston, 1992, 259–294 Zbl0760.41030
  35. [35] Mallat S.G., Multiresolution approximations and wavelet orthonormal bases of L 2(ℝ), Trans. Amer. Math. Soc., 1989, 315(1), 69–87 Zbl0686.42018
  36. [36] Meyer Y., Ondelettes et Opérateurs. I, Actualites Math., Hermann, Paris, 1990 
  37. [37] Natanson I.P., Theory of Functions of a Real Variable. II, Frederick Ungar, New York, 1961 
  38. [38] Révész Sz.Gy., San Antolín A., Equivalence of A-approximate continuity for self-adjoint expansive linear maps, Linear Algebra Appl., 2008, 429(7), 1504–1521 http://dx.doi.org/10.1016/j.laa.2008.04.028[WoS][Crossref] Zbl1159.26003
  39. [39] Rzeszotnik Z., Calderón’s condition and wavelets, Collect. Math., 2001, 52(2), 181–191 Zbl0989.42017
  40. [40] San Antolín A., Characterization of low pass filters in a multiresolution analysis, Studia Math., 2009, 190(2), 99–116 http://dx.doi.org/10.4064/sm190-2-1[Crossref] Zbl1166.42022
  41. [41] San Antolín A., On the density order of the principal shift-invariant subspaces of L 2(ℝn), J. Approx. Theory, 2012, 164(8), 1007–1025 http://dx.doi.org/10.1016/j.jat.2012.04.003[WoS][Crossref] Zbl1257.46014
  42. [42] Weiss G., Wilson E.N., The mathematical theory of wavelets, In: Twentieth Century Harmonic Analysis-A Celebration, Il Ciocco, July 2–15, 2000, NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer, Dordrecht, 2001, 329–366 http://dx.doi.org/10.1007/978-94-010-0662-0_15[Crossref] 
  43. [43] Wojtaszczyk P., A Mathematical Introduction to Wavelets, London Math. Soc. Stud. Texts, 37, Cambridge University Press, Cambridge, 1997 http://dx.doi.org/10.1017/CBO9780511623790[Crossref] Zbl0865.42026
  44. [44] Zhou F.-Y., Li Y.-Z., Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of L 2((ℝn), Kyoto J. Math., 2010, 50(1), 83–99 http://dx.doi.org/10.1215/0023608X-2009-006[WoS][Crossref] Zbl1228.42044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.