Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators

Adam Kanigowski; Wojciech Kryszewski

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2240-2263
  • ISSN: 2391-5455

Abstract

top
We study several aspects of a generalized Perron-Frobenius and Krein-Rutman theorems concerning spectral properties of a (possibly unbounded) linear operator on a cone in a Banach space. The operator is subject to the so-called tangency or weak range assumptions implying the resolvent invariance of the cone. The further assumptions rely on relations between the spectral and essential spectral bounds of the operator. In general we do not assume that the cone induces the Banach lattice structure into the underlying space.

How to cite

top

Adam Kanigowski, and Wojciech Kryszewski. "Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators." Open Mathematics 10.6 (2012): 2240-2263. <http://eudml.org/doc/269599>.

@article{AdamKanigowski2012,
abstract = {We study several aspects of a generalized Perron-Frobenius and Krein-Rutman theorems concerning spectral properties of a (possibly unbounded) linear operator on a cone in a Banach space. The operator is subject to the so-called tangency or weak range assumptions implying the resolvent invariance of the cone. The further assumptions rely on relations between the spectral and essential spectral bounds of the operator. In general we do not assume that the cone induces the Banach lattice structure into the underlying space.},
author = {Adam Kanigowski, Wojciech Kryszewski},
journal = {Open Mathematics},
keywords = {Eigenvalue; Eigenvector; Spectral bound; Essential spectrum; Positive operators; Tangent cone; Tangency condition; Perron-Frobenius theorem; Krein-Rutman theorem; Strongly continuous semigroup; eigenvalue; eigenvector; spectral bound; essential spectrum; positive operators; tangent cone; tangency condition; strongly continuous semigroup},
language = {eng},
number = {6},
pages = {2240-2263},
title = {Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators},
url = {http://eudml.org/doc/269599},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Adam Kanigowski
AU - Wojciech Kryszewski
TI - Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2240
EP - 2263
AB - We study several aspects of a generalized Perron-Frobenius and Krein-Rutman theorems concerning spectral properties of a (possibly unbounded) linear operator on a cone in a Banach space. The operator is subject to the so-called tangency or weak range assumptions implying the resolvent invariance of the cone. The further assumptions rely on relations between the spectral and essential spectral bounds of the operator. In general we do not assume that the cone induces the Banach lattice structure into the underlying space.
LA - eng
KW - Eigenvalue; Eigenvector; Spectral bound; Essential spectrum; Positive operators; Tangent cone; Tangency condition; Perron-Frobenius theorem; Krein-Rutman theorem; Strongly continuous semigroup; eigenvalue; eigenvector; spectral bound; essential spectrum; positive operators; tangent cone; tangency condition; strongly continuous semigroup
UR - http://eudml.org/doc/269599
ER -

References

top
  1. [1] Akhmerov R.R., Kamenskii M.I., Potapov A.S., Rodkina A.E., Sadovskii B.N., Measures of Noncompactness and Condensing Operators, Oper. Theory Adv. Appl., 55, Birkhäuser, Basel, 1992 
  2. [2] Aliprantis C.D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006 
  3. [3] Appell J., De Pascale E., Vignoli A., Nonlinear Spectral Theory, Walter De Gruyter, Berlin, 2004 http://dx.doi.org/10.1515/9783110199260[Crossref] Zbl1056.47001
  4. [4] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander F., Schlotterbeck U., One-Parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184, Springer, Berlin, 1986 
  5. [5] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1984 Zbl0641.47066
  6. [6] Barbu V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leiden, 1976 http://dx.doi.org/10.1007/978-94-010-1537-0[Crossref] 
  7. [7] Brézis H., Browder F.E., A general principle on ordered sets in nonlinear functional analysis, Advances in Math., 1976, 21(3), 355–364 http://dx.doi.org/10.1016/S0001-8708(76)80004-7[Crossref] Zbl0339.47030
  8. [8] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7[Crossref] 
  9. [9] Edmunds D.E., Potter A.J.B., Stuart C.A., Non-Compact Positive Operators, Proc. Roy. Soc. London Ser. A, 1972, 328(1572), 67–81 http://dx.doi.org/10.1098/rspa.1972.0069[Crossref] Zbl0232.47035
  10. [10] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer, New York, 2000 Zbl0952.47036
  11. [11] Greiner G., Voigt J., Wolff M., On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory, 1981, 5(2), 245–256 Zbl0469.47032
  12. [12] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. Nonlinear Anal. Appl., 7, Walter de Gruyter, Berlin, 2001 Zbl0988.34001
  13. [13] Kato T., Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., 132, Springer, New York, 1966 Zbl0148.12601
  14. [14] Kobayashi Y., Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 1975, 27(4), 640–665 http://dx.doi.org/10.2969/jmsj/02740640[Crossref] Zbl0313.34068
  15. [15] Krasnosel’skij M.A., Lifshits Je.A., Sobolev A.V., Positive Linear Systems, Sigma Ser. Appl. Math., 5, Heldermann, Berlin, 1989 
  16. [16] Mallet-Paret J., Nussbaum R.D., Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 2010, 7(1), 103–143 http://dx.doi.org/10.1007/s11784-010-0010-3[Crossref][WoS] Zbl1206.47044
  17. [17] Martin R.H., Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York-London-Sydney, 1976 
  18. [18] Nagel R., Uhlig H., An abstract Kato inequality for generators of positive operators semigroups on Banach lattices, J. Operator Theory, 1981, 6(1), 113–123 Zbl0486.47025
  19. [19] van Neerven J., The asymptotic behaviour of semigroups of linear operators, Oper. Theory Adv. Appl., 88, Birkhäuser, Basel, 1996 http://dx.doi.org/10.1007/978-3-0348-9206-3[Crossref] 
  20. [20] Nussbaum R.D., The radius of the essential spectrum, Duke Math. J., 1970, 37, 473–478 http://dx.doi.org/10.1215/S0012-7094-70-03759-2[Crossref] Zbl0216.41602
  21. [21] Nussbaum R.D., Positive operators and elliptic eigenvalue problems, Math. Z., 1984, 186(2), 247–264 http://dx.doi.org/10.1007/BF01161807[Crossref] Zbl0549.47026
  22. [22] Nussbaum R.D., Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, In: Fixed Point Theory, Sherbrooke, June 2–21, 1980, Lecture Notes in Math., 886, Springer, Berlin-New York, 1981, 309–330 
  23. [23] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, New York, 1983 http://dx.doi.org/10.1007/978-1-4612-5561-1[Crossref] Zbl0516.47023
  24. [24] Vrabie I.I., Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surveys Pure Appl. Math., 32, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1987 Zbl0721.47050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.