Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators
Adam Kanigowski; Wojciech Kryszewski
Open Mathematics (2012)
- Volume: 10, Issue: 6, page 2240-2263
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAdam Kanigowski, and Wojciech Kryszewski. "Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators." Open Mathematics 10.6 (2012): 2240-2263. <http://eudml.org/doc/269599>.
@article{AdamKanigowski2012,
abstract = {We study several aspects of a generalized Perron-Frobenius and Krein-Rutman theorems concerning spectral properties of a (possibly unbounded) linear operator on a cone in a Banach space. The operator is subject to the so-called tangency or weak range assumptions implying the resolvent invariance of the cone. The further assumptions rely on relations between the spectral and essential spectral bounds of the operator. In general we do not assume that the cone induces the Banach lattice structure into the underlying space.},
author = {Adam Kanigowski, Wojciech Kryszewski},
journal = {Open Mathematics},
keywords = {Eigenvalue; Eigenvector; Spectral bound; Essential spectrum; Positive operators; Tangent cone; Tangency condition; Perron-Frobenius theorem; Krein-Rutman theorem; Strongly continuous semigroup; eigenvalue; eigenvector; spectral bound; essential spectrum; positive operators; tangent cone; tangency condition; strongly continuous semigroup},
language = {eng},
number = {6},
pages = {2240-2263},
title = {Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators},
url = {http://eudml.org/doc/269599},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Adam Kanigowski
AU - Wojciech Kryszewski
TI - Perron-Frobenius and Krein-Rutman theorems for tangentially positive operators
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2240
EP - 2263
AB - We study several aspects of a generalized Perron-Frobenius and Krein-Rutman theorems concerning spectral properties of a (possibly unbounded) linear operator on a cone in a Banach space. The operator is subject to the so-called tangency or weak range assumptions implying the resolvent invariance of the cone. The further assumptions rely on relations between the spectral and essential spectral bounds of the operator. In general we do not assume that the cone induces the Banach lattice structure into the underlying space.
LA - eng
KW - Eigenvalue; Eigenvector; Spectral bound; Essential spectrum; Positive operators; Tangent cone; Tangency condition; Perron-Frobenius theorem; Krein-Rutman theorem; Strongly continuous semigroup; eigenvalue; eigenvector; spectral bound; essential spectrum; positive operators; tangent cone; tangency condition; strongly continuous semigroup
UR - http://eudml.org/doc/269599
ER -
References
top- [1] Akhmerov R.R., Kamenskii M.I., Potapov A.S., Rodkina A.E., Sadovskii B.N., Measures of Noncompactness and Condensing Operators, Oper. Theory Adv. Appl., 55, Birkhäuser, Basel, 1992
- [2] Aliprantis C.D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006
- [3] Appell J., De Pascale E., Vignoli A., Nonlinear Spectral Theory, Walter De Gruyter, Berlin, 2004 http://dx.doi.org/10.1515/9783110199260[Crossref] Zbl1056.47001
- [4] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander F., Schlotterbeck U., One-Parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184, Springer, Berlin, 1986
- [5] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1984 Zbl0641.47066
- [6] Barbu V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leiden, 1976 http://dx.doi.org/10.1007/978-94-010-1537-0[Crossref]
- [7] Brézis H., Browder F.E., A general principle on ordered sets in nonlinear functional analysis, Advances in Math., 1976, 21(3), 355–364 http://dx.doi.org/10.1016/S0001-8708(76)80004-7[Crossref] Zbl0339.47030
- [8] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985 http://dx.doi.org/10.1007/978-3-662-00547-7[Crossref]
- [9] Edmunds D.E., Potter A.J.B., Stuart C.A., Non-Compact Positive Operators, Proc. Roy. Soc. London Ser. A, 1972, 328(1572), 67–81 http://dx.doi.org/10.1098/rspa.1972.0069[Crossref] Zbl0232.47035
- [10] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer, New York, 2000 Zbl0952.47036
- [11] Greiner G., Voigt J., Wolff M., On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory, 1981, 5(2), 245–256 Zbl0469.47032
- [12] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. Nonlinear Anal. Appl., 7, Walter de Gruyter, Berlin, 2001 Zbl0988.34001
- [13] Kato T., Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., 132, Springer, New York, 1966 Zbl0148.12601
- [14] Kobayashi Y., Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 1975, 27(4), 640–665 http://dx.doi.org/10.2969/jmsj/02740640[Crossref] Zbl0313.34068
- [15] Krasnosel’skij M.A., Lifshits Je.A., Sobolev A.V., Positive Linear Systems, Sigma Ser. Appl. Math., 5, Heldermann, Berlin, 1989
- [16] Mallet-Paret J., Nussbaum R.D., Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 2010, 7(1), 103–143 http://dx.doi.org/10.1007/s11784-010-0010-3[Crossref][WoS] Zbl1206.47044
- [17] Martin R.H., Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York-London-Sydney, 1976
- [18] Nagel R., Uhlig H., An abstract Kato inequality for generators of positive operators semigroups on Banach lattices, J. Operator Theory, 1981, 6(1), 113–123 Zbl0486.47025
- [19] van Neerven J., The asymptotic behaviour of semigroups of linear operators, Oper. Theory Adv. Appl., 88, Birkhäuser, Basel, 1996 http://dx.doi.org/10.1007/978-3-0348-9206-3[Crossref]
- [20] Nussbaum R.D., The radius of the essential spectrum, Duke Math. J., 1970, 37, 473–478 http://dx.doi.org/10.1215/S0012-7094-70-03759-2[Crossref] Zbl0216.41602
- [21] Nussbaum R.D., Positive operators and elliptic eigenvalue problems, Math. Z., 1984, 186(2), 247–264 http://dx.doi.org/10.1007/BF01161807[Crossref] Zbl0549.47026
- [22] Nussbaum R.D., Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, In: Fixed Point Theory, Sherbrooke, June 2–21, 1980, Lecture Notes in Math., 886, Springer, Berlin-New York, 1981, 309–330
- [23] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, New York, 1983 http://dx.doi.org/10.1007/978-1-4612-5561-1[Crossref] Zbl0516.47023
- [24] Vrabie I.I., Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surveys Pure Appl. Math., 32, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1987 Zbl0721.47050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.