A Perron-type theorem for nonautonomous delay equations

Luis Barreira; Claudia Valls

Open Mathematics (2013)

  • Volume: 11, Issue: 7, page 1283-1295
  • ISSN: 2391-5455

Abstract

top
We show that if the Lyapunov exponents of a linear delay equation x′ = L(t)x t are limits, then the same happens with the exponential growth rates of the solutions to the equation x′ = L(t)x t + f(t, x t) for any sufficiently small perturbation f.

How to cite

top

Luis Barreira, and Claudia Valls. "A Perron-type theorem for nonautonomous delay equations." Open Mathematics 11.7 (2013): 1283-1295. <http://eudml.org/doc/269600>.

@article{LuisBarreira2013,
abstract = {We show that if the Lyapunov exponents of a linear delay equation x′ = L(t)x t are limits, then the same happens with the exponential growth rates of the solutions to the equation x′ = L(t)x t + f(t, x t) for any sufficiently small perturbation f.},
author = {Luis Barreira, Claudia Valls},
journal = {Open Mathematics},
keywords = {Lyapunov exponents; Nonautonomous delay equations; nonautonomous delay equations},
language = {eng},
number = {7},
pages = {1283-1295},
title = {A Perron-type theorem for nonautonomous delay equations},
url = {http://eudml.org/doc/269600},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Luis Barreira
AU - Claudia Valls
TI - A Perron-type theorem for nonautonomous delay equations
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1283
EP - 1295
AB - We show that if the Lyapunov exponents of a linear delay equation x′ = L(t)x t are limits, then the same happens with the exponential growth rates of the solutions to the equation x′ = L(t)x t + f(t, x t) for any sufficiently small perturbation f.
LA - eng
KW - Lyapunov exponents; Nonautonomous delay equations; nonautonomous delay equations
UR - http://eudml.org/doc/269600
ER -

References

top
  1. [1] Barreira L., Pesin Ya., Nonuniform Hyperbolicity, Encyclopedia Math. Appl., 115, Cambridge University Press, Cambridge, 2007 
  2. [2] Barreira L., Valls C., Stability of Nonautonomous Differential Equations, Lecture Notes in Math., 1926, Springer, Berlin, 2008 Zbl1152.34003
  3. [3] Coffman C.V., Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 1964, 110, 22–51 http://dx.doi.org/10.1090/S0002-9947-1964-0156122-9[Crossref] Zbl0122.09703
  4. [4] Coppel W.A., Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston, 1965 
  5. [5] Hale J.K., Verduyn Lunel S.M., Introduction to Functional-Differential Equations, Appl. Math. Sci., 99, Springer, New York, 1993 Zbl0787.34002
  6. [6] Hartman P., Wintner A., Asymptotic integrations of linear differential equations, Amer. J. Math., 1955, 77, 45–86 http://dx.doi.org/10.2307/2372422[Crossref] Zbl0064.08703
  7. [7] Lettenmeyer F., Über das asymptotische Verhalten der Lösungen von Differentialgleichungen und Differentialgleichungssystemen, Sitzungsberichte der Königl. Bayerischen Akademie der Wissenschaften, München, 1929, 201–252 Zbl55.0845.02
  8. [8] Matsui K., Matsunaga H., Murakami S., Perron type theorem for functional differential equations with infinite delay in a Banach space, Nonlinear Anal., 2008, 69(11), 3821–3837 http://dx.doi.org/10.1016/j.na.2007.10.017[Crossref] Zbl1169.34053
  9. [9] Perron O., Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 1929, 29(1), 129–160 http://dx.doi.org/10.1007/BF01180524[Crossref] Zbl54.0456.04
  10. [10] Pituk M., A Perron type theorem for functional differential equations, J. Math. Anal. Appl., 2006, 316(1), 24–41 http://dx.doi.org/10.1016/j.jmaa.2005.04.027[Crossref] 
  11. [11] Pituk M., Asymptotic behavior and oscillation of functional differential equations, J. Math. Anal. Appl., 2006, 322(2), 1140–1158 http://dx.doi.org/10.1016/j.jmaa.2005.09.081[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.