A Perron-type theorem for nonautonomous delay equations
Open Mathematics (2013)
- Volume: 11, Issue: 7, page 1283-1295
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topLuis Barreira, and Claudia Valls. "A Perron-type theorem for nonautonomous delay equations." Open Mathematics 11.7 (2013): 1283-1295. <http://eudml.org/doc/269600>.
@article{LuisBarreira2013,
abstract = {We show that if the Lyapunov exponents of a linear delay equation x′ = L(t)x t are limits, then the same happens with the exponential growth rates of the solutions to the equation x′ = L(t)x t + f(t, x t) for any sufficiently small perturbation f.},
author = {Luis Barreira, Claudia Valls},
journal = {Open Mathematics},
keywords = {Lyapunov exponents; Nonautonomous delay equations; nonautonomous delay equations},
language = {eng},
number = {7},
pages = {1283-1295},
title = {A Perron-type theorem for nonautonomous delay equations},
url = {http://eudml.org/doc/269600},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Luis Barreira
AU - Claudia Valls
TI - A Perron-type theorem for nonautonomous delay equations
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1283
EP - 1295
AB - We show that if the Lyapunov exponents of a linear delay equation x′ = L(t)x t are limits, then the same happens with the exponential growth rates of the solutions to the equation x′ = L(t)x t + f(t, x t) for any sufficiently small perturbation f.
LA - eng
KW - Lyapunov exponents; Nonautonomous delay equations; nonautonomous delay equations
UR - http://eudml.org/doc/269600
ER -
References
top- [1] Barreira L., Pesin Ya., Nonuniform Hyperbolicity, Encyclopedia Math. Appl., 115, Cambridge University Press, Cambridge, 2007
- [2] Barreira L., Valls C., Stability of Nonautonomous Differential Equations, Lecture Notes in Math., 1926, Springer, Berlin, 2008 Zbl1152.34003
- [3] Coffman C.V., Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 1964, 110, 22–51 http://dx.doi.org/10.1090/S0002-9947-1964-0156122-9[Crossref] Zbl0122.09703
- [4] Coppel W.A., Stability and Asymptotic Behavior of Differential Equations, D.C. Heath, Boston, 1965
- [5] Hale J.K., Verduyn Lunel S.M., Introduction to Functional-Differential Equations, Appl. Math. Sci., 99, Springer, New York, 1993 Zbl0787.34002
- [6] Hartman P., Wintner A., Asymptotic integrations of linear differential equations, Amer. J. Math., 1955, 77, 45–86 http://dx.doi.org/10.2307/2372422[Crossref] Zbl0064.08703
- [7] Lettenmeyer F., Über das asymptotische Verhalten der Lösungen von Differentialgleichungen und Differentialgleichungssystemen, Sitzungsberichte der Königl. Bayerischen Akademie der Wissenschaften, München, 1929, 201–252 Zbl55.0845.02
- [8] Matsui K., Matsunaga H., Murakami S., Perron type theorem for functional differential equations with infinite delay in a Banach space, Nonlinear Anal., 2008, 69(11), 3821–3837 http://dx.doi.org/10.1016/j.na.2007.10.017[Crossref] Zbl1169.34053
- [9] Perron O., Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 1929, 29(1), 129–160 http://dx.doi.org/10.1007/BF01180524[Crossref] Zbl54.0456.04
- [10] Pituk M., A Perron type theorem for functional differential equations, J. Math. Anal. Appl., 2006, 316(1), 24–41 http://dx.doi.org/10.1016/j.jmaa.2005.04.027[Crossref]
- [11] Pituk M., Asymptotic behavior and oscillation of functional differential equations, J. Math. Anal. Appl., 2006, 322(2), 1140–1158 http://dx.doi.org/10.1016/j.jmaa.2005.09.081[Crossref]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.