On the periodicity of trigonometric functions generalized to quotient rings of R[x]

Claude Gauthier

Open Mathematics (2006)

  • Volume: 4, Issue: 3, page 395-412
  • ISSN: 2391-5455

Abstract

top
We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.

How to cite

top

Claude Gauthier. "On the periodicity of trigonometric functions generalized to quotient rings of R[x]." Open Mathematics 4.3 (2006): 395-412. <http://eudml.org/doc/269604>.

@article{ClaudeGauthier2006,
abstract = {We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.},
author = {Claude Gauthier},
journal = {Open Mathematics},
keywords = {30G35; 11M41},
language = {eng},
number = {3},
pages = {395-412},
title = {On the periodicity of trigonometric functions generalized to quotient rings of R[x]},
url = {http://eudml.org/doc/269604},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Claude Gauthier
TI - On the periodicity of trigonometric functions generalized to quotient rings of R[x]
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 395
EP - 412
AB - We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.
LA - eng
KW - 30G35; 11M41
UR - http://eudml.org/doc/269604
ER -

References

top
  1. [1] H. Cartan: Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes, Hermann, Paris, 1961. Zbl0094.04401
  2. [2] P. Deguire and C. Gauthier: “Sur la dérivation dans certains anneaux quotients de R[x]”, Ann. Sci. Math. Québec, Vol. 24, (2000), pp. 19–31. Zbl1094.13547
  3. [3] L. Euler: “De summis serierum reciprocarum”, Comment. Acad. Sci. Petropolit., Vol. 7(1734/35), (1740), pp. 123–134; Opera omnia, Ser. 1, Vol. 14, Leipzig-Berlin, 1924, pp. 73–86. 
  4. [4] C. Gauthier: “Quelques propriétés algébriques des ensembles de nombres à inverse additif composé”, Ann. Sci. Math. Québec, Vol. 26, (2002), pp. 47–59. 
  5. [5] I.J. Good: “A simple generalization of analytic function theory”, Expo. Math., Vol. 6 (1988), pp. 289–311. Zbl0662.30045
  6. [6] E. Grosswald: Topics from the Theory of Numbers, Birkhäuser, Boston, 1984. 
  7. [7] M.E. Muldoon and A.A. Ungar: “Beyond sin and cos”, Math. Mag., Vol. 69 (1996), pp. 2–14. http://dx.doi.org/10.2307/2691389 Zbl0860.33003
  8. [8] H. Silverman: Complex Variables, Houghton Mifflin, Boston, 1975. 
  9. [9] G. Valiron: Théorie des fonctions, Masson, Paris, 1948. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.