Realizability and automatic realizability of Galois groups of order 32
Open Mathematics (2010)
- Volume: 8, Issue: 2, page 244-260
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topHelen Grundman, and Tara Smith. "Realizability and automatic realizability of Galois groups of order 32." Open Mathematics 8.2 (2010): 244-260. <http://eudml.org/doc/269614>.
@article{HelenGrundman2010,
abstract = {This article provides necessary and sufficient conditions for each group of order 32 to be realizable as a Galois group over an arbitrary field. These conditions, given in terms of the number of square classes of the field and the triviality of specific elements in related Brauer groups, are used to derive a variety of automatic realizability results.},
author = {Helen Grundman, Tara Smith},
journal = {Open Mathematics},
keywords = {Inverse Galois theory; 2-groups; Automatic realizability; inverse Galois theory; automatic realizability; Brauer group; quaternion algebra},
language = {eng},
number = {2},
pages = {244-260},
title = {Realizability and automatic realizability of Galois groups of order 32},
url = {http://eudml.org/doc/269614},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Helen Grundman
AU - Tara Smith
TI - Realizability and automatic realizability of Galois groups of order 32
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 244
EP - 260
AB - This article provides necessary and sufficient conditions for each group of order 32 to be realizable as a Galois group over an arbitrary field. These conditions, given in terms of the number of square classes of the field and the triviality of specific elements in related Brauer groups, are used to derive a variety of automatic realizability results.
LA - eng
KW - Inverse Galois theory; 2-groups; Automatic realizability; inverse Galois theory; automatic realizability; Brauer group; quaternion algebra
UR - http://eudml.org/doc/269614
ER -
References
top- [1] Carlson J., The mod 2 cohomology of 2-groups, Tables of 2-groups: 〈http://www.math.uga.edu/~lvalero/cohointro. html〉
- [2] Gao W., Leep D. B., Minác J., Smith T. L., Galois groups over nonrigid fields, In: Valuation Theory and its Applications, Vol. II, Fields Institute Communications Series, 33, American Mathematical Society, 2003, 61–77 Zbl1049.12004
- [3] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.9, 2006, 〈http://www.gap-system.org〉
- [4] Grundman H.G., Smith T.L., Automatic realizability of Galois groups of order 16, Proc. AMS, 1996, 124, 2631–2640 http://dx.doi.org/10.1090/S0002-9939-96-03345-X Zbl0862.12005
- [5] Grundman H.G., Smith T.L., Galois realizability of acentral C 4-extension of D 8, J. Alg., 2009, 322, 3492–3498 http://dx.doi.org/10.1016/j.jalgebra.2009.08.015 Zbl1222.12007
- [6] Grundman H.G., Smith T.L., Swallow J. R., Groups of order 16 as Galois groups, Expo. Math., 1995, 13, 289–319 Zbl0838.12004
- [7] Grundman H.G., Stewart G., Galois realizability of non-split group extensions of C 2 by (C 2)r × (C 4)s × (D 4)t, J. Algebra, 2004, 272, 425–434 http://dx.doi.org/10.1016/j.jalgebra.2003.09.017 Zbl1043.12004
- [8] Hall M.Jr., Senior J.K., The Groups of Order 2n (n ≤ 6), Macmillian, New York, 1964
- [9] Ishkhanov V.V., Lur’e B.B., Faddeev D.K., The Embedding Problem in Galois Theory, Translations of Mathematical Monographs, 165, American Mathematical Society, Providence, R.I., 1997
- [10] Jensen C.U., On the representation of a group as a Galois group over an arbitrary field, In: De Koninck J.-M., Levesque C. (Eds.), Theoriedes Nombres - Number Theory, Walterde Gruyter, 1989, 441–458
- [11] Kuyk W., Lenstra H. W., Abelian extensions of arbitrary fields, Math. Ann., 1975, 216, 99–104 http://dx.doi.org/10.1007/BF01432536 Zbl0293.12102
- [12] Ledet A., On 2-groups as Galois groups, Canad. J. Math., 1995, 47, 1253–1273 Zbl0849.12006
- [13] Ledet A., Embedding problems with cyclic kernel of order 4, Israel J. Math., 1998, 106, 109–131 http://dx.doi.org/10.1007/BF02773463 Zbl0913.12004
- [14] Michailov I., Embedding obstructions for the cyclic and modular 2-groups, Math. Balkanica (N.S.), 2007, 21, 31–50 Zbl1219.12006
- [15] Michailov I., Groups of order 32 as Galois groups, Serdica Math. J., 2007, 33, 1–34
- [16] Smith T.L., Extra-special 2-groups of order 32 as Galois groups, Canad. J. Math., 1994, 46, 886–896 Zbl0810.12004
- [17] Swallow J., Thiem N., Quadratic corestriction, C 2-embedding problems, and explicit construction, Comm. Algebra, 2002, 30, 3227–3258 http://dx.doi.org/10.1081/AGB-120004485 Zbl1019.12001
- [18] Witt E., Konstruktion von Galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p f, J. Reine Angew. Math., 1936, 174, 237–245 (in German)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.