Simultaneous triangularization of commuting matrices for the solution of polynomial equations
Vanesa Cortés; Juan Peña; Tomas Sauer
Open Mathematics (2012)
- Volume: 10, Issue: 1, page 277-291
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topVanesa Cortés, Juan Peña, and Tomas Sauer. "Simultaneous triangularization of commuting matrices for the solution of polynomial equations." Open Mathematics 10.1 (2012): 277-291. <http://eudml.org/doc/269622>.
@article{VanesaCortés2012,
abstract = {We present an extension of the QR method to simultaneously compute the joint eigenvalues of a finite family of commuting matrices. The problem is motivated by the task of finding solutions of a polynomial system. Several examples are included.},
author = {Vanesa Cortés, Juan Peña, Tomas Sauer},
journal = {Open Mathematics},
keywords = {QR-method; Commuting matrices; Simultaneous triangularization; commuting matrices; simultaneous triangularization; numerical examples; joint eigenvalues; polynomial system},
language = {eng},
number = {1},
pages = {277-291},
title = {Simultaneous triangularization of commuting matrices for the solution of polynomial equations},
url = {http://eudml.org/doc/269622},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Vanesa Cortés
AU - Juan Peña
AU - Tomas Sauer
TI - Simultaneous triangularization of commuting matrices for the solution of polynomial equations
JO - Open Mathematics
PY - 2012
VL - 10
IS - 1
SP - 277
EP - 291
AB - We present an extension of the QR method to simultaneously compute the joint eigenvalues of a finite family of commuting matrices. The problem is motivated by the task of finding solutions of a polynomial system. Several examples are included.
LA - eng
KW - QR-method; Commuting matrices; Simultaneous triangularization; commuting matrices; simultaneous triangularization; numerical examples; joint eigenvalues; polynomial system
UR - http://eudml.org/doc/269622
ER -
References
top- [1] Auzinger W., Stetter H.J., An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations, In: Numerical Mathematics, Singapore, 1988, Internat. Schriftenreihe Numer. Math., 86, Birkhäuser, Basel, 1988, 11–30 Zbl0658.65047
- [2] Bunse-Gerstner A., Byers R., Mehrmann V., A chart of numerical methods for structured eigenvalue problems, SIAM J. Matrix Anal. Appl., 1992, 13(2), 419–453 http://dx.doi.org/10.1137/0613028 Zbl0757.65040
- [3] Bunse-Gerstner A., Byers R., Mehrmann V., Numerical methods for simultaneous diagonalization, SIAM J. Matrix Anal. Appl., 1993, 14(), 927–949 http://dx.doi.org/10.1137/0614062 Zbl0786.65030
- [4] Cox D., Little J., O’shea D., Ideals, Varieties and Algorithms, 2nd ed., Undergrad. Texts Math., Springer, New York, 1997
- [5] Gantmacher F.R., The Theory of Matrices. II, Chelsea, New York, 1959 Zbl0085.01001
- [6] Golub G.H, Van Loan C.F., Matrix Computations, 3rd ed., Johns Hopkins Stud. Math. Sci., Johns Hopkins University Press, Baltimore, 1996
- [7] Gonzales-Vega L., Rouillier F., Roy M.-F., Symbolic recipes for polynomial system solving, In: Some Tapas in Computer Algebra, Algorithms Comput. Math., 4, Springer, Berlin, 1999, 34–65 Zbl0966.13020
- [8] Melenk H., Möller H.M., Neun W., Symbolic solution of large stationary chemical kinetics problems, Impact Comput. Sci. Engrg., 1989, 1(2), 138–167 http://dx.doi.org/10.1016/0899-8248(89)90027-X Zbl0704.65039
- [9] Moler C., The QR algorithm, Cleve’s Corner, Mathworks Newsletters, 1995, available at www.mathworks.com/company/newsletters/news_notes/pdf/sum95cleve.pdf
- [10] Möller H.M., Sauer T., H-bases I: The foundation, In: Curve and Surface Fitting, Saint-Malo, 1999, Innov. Appl. Math., Vanderbilt University Press, Nashville, 2000, 325–332
- [11] Möller H.M., Sauer, T., H-bases II: Application to numerical problems, In: Curve and Surface Fitting, Saint-Malo, 1999, Innov. Appl. Math., Vanderbilt University Press, Nashville, 2000, 333–342
- [12] Möller H.M., Sauer T., H-bases for polynomial interpolation and system solving, Adv. Comput. Math., 2000, 12(4), 335–362 http://dx.doi.org/10.1023/A:1018937723499 Zbl0943.65059
- [13] Möller H.M., Stetter H.J., Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems, Numer. Math., 1995, 70(3), 311–329 http://dx.doi.org/10.1007/s002110050122 Zbl0851.65029
- [14] Möller H.M., Tenberg R., Multivariate polynomial system solving using intersections of eigenspaces, J. Symbolic Comput., 2001, 32(5), 513–531 http://dx.doi.org/10.1006/jsco.2001.0476 Zbl1084.65523
- [15] Peña J.M., A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 2001, 22(4), 1027–1037 http://dx.doi.org/10.1137/S0895479800370342 Zbl0986.15015
- [16] Peña J.M., On an alternative to Gerschgorin circles and ovals of Cassini, Numer. Math., 2003, 95(2), 337–345 http://dx.doi.org/10.1007/s00211-002-0427-8 Zbl1032.15014
- [17] Sauer T., Polynomial interpolation in several variables: lattices, differences, and ideals, In: Topics in Multivariate Approximation and Interpolation, Stud. Comput. Math., 12, Elsevier, Amsterdam, 2006, 191–230 http://dx.doi.org/10.1016/S1570-579X(06)80009-1 Zbl1205.41004
- [18] Sauer T., Wagenführ D., Polynomial systems, H-bases, and an application from kinematic transforms, In: Ninth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, Monogr. Semin. Mat. García Galdeano, 33, Prensas Univ. Zaragoza, Zaragoza, 2006, 185–196 Zbl1115.65333
- [19] Scott D.S., On the accuracy of the Gerschgorin circle theorem for bounding the spread of a real symmetric matrix, Linear Algebra Appl., 1985, 65, 147–155 http://dx.doi.org/10.1016/0024-3795(85)90093-X
- [20] Stetter H.J., Matrix eigenproblems at the heart of polynomial system solving, SIGSAM Bull., 1996, 30(4), 22–25 http://dx.doi.org/10.1145/242961.242966 Zbl1097.65530
- [21] Trefethen L.N, Bau D. III, Numerical Linear Algebra, SIAM, Philadelphia, 1997 http://dx.doi.org/10.1137/1.9780898719574
- [22] Wilkinson J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965 Zbl0258.65037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.