Commutativity of set-valued cosine families
Andrzej Smajdor; Wilhelmina Smajdor
Open Mathematics (2014)
- Volume: 12, Issue: 12, page 1871-1881
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAndrzej Smajdor, and Wilhelmina Smajdor. "Commutativity of set-valued cosine families." Open Mathematics 12.12 (2014): 1871-1881. <http://eudml.org/doc/269624>.
@article{AndrzejSmajdor2014,
abstract = {Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then $F_t \circ F_s (x) = F_s \circ F_t (x)fors,t \geqslant 0andx \in K$.},
author = {Andrzej Smajdor, Wilhelmina Smajdor},
journal = {Open Mathematics},
keywords = {Cosine and sine families of set-valued functions; The second order set-valued differential problem; Commutative cosine families; cosine and sine families of set-valued functions; the second order set-valued differential problem; commutative cosine families},
language = {eng},
number = {12},
pages = {1871-1881},
title = {Commutativity of set-valued cosine families},
url = {http://eudml.org/doc/269624},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Andrzej Smajdor
AU - Wilhelmina Smajdor
TI - Commutativity of set-valued cosine families
JO - Open Mathematics
PY - 2014
VL - 12
IS - 12
SP - 1871
EP - 1881
AB - Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then $F_t \circ F_s (x) = F_s \circ F_t (x)fors,t \geqslant 0andx \in K$.
LA - eng
KW - Cosine and sine families of set-valued functions; The second order set-valued differential problem; Commutative cosine families; cosine and sine families of set-valued functions; the second order set-valued differential problem; commutative cosine families
UR - http://eudml.org/doc/269624
ER -
References
top- [1] Aghajani M., Nourouzi K., On the regular cosine family of linear correspondences, Aequationes Math. 83 (2012), 215–221 http://dx.doi.org/10.1007/s00010-011-0112-z Zbl1257.47006
- [2] Edgar G.A., Measure, Topology and Fractal Geometry, Undergrad.Texts Math., Springer-Verlag New York Inc., New York, 1990 http://dx.doi.org/10.1007/978-1-4757-4134-6
- [3] Łojasiewicz S., An Introduction to the Theory of Real Functions, Wiley, Chichester - New York - Brisbane - Toronto - Singapore 1988
- [4] Mainka-Niemczyk E., Integral representation of set-valued sine families, J. Appl. Anal. 18(2) (2012), 243–258 http://dx.doi.org/10.1515/jaa-2012-0016 Zbl1276.26055
- [5] Mainka-Niemczyk E., Multivalued second order differential problem, Ann. Univ. Paedagog. Crac. Stud. Math. 11 (2012), 53–67 Zbl1298.49024
- [6] Mainka-Niemczyk E., Some properties of set-valued sine families, Opuscula Math. 32(1) (2012), 157–168 http://dx.doi.org/10.7494/OpMath.2012.32.1.159 Zbl1245.26014
- [7] Nikodem K., On concave and midpoint concave set-valued functions, Glasnik Mat. 22(42)(1987), 69–76 Zbl0642.39006
- [8] Piszczek M., Integral representations of convex and concave set-valued functions, Demonstratio Math. 35 (2002), 727–742 Zbl1025.28005
- [9] Piszczek M., Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Peadagog. Crac. Stud. Math. 5 (2006), 87–98 Zbl1156.26308
- [10] Piszczek M., On multivalued cosine families, J. Appl. Anal. 14 (2007), 57–76 Zbl1131.26019
- [11] Piszczek M., On multivalued iteration semigroups, Aequationes Math. 81 (2011), 97–108 http://dx.doi.org/10.1007/s00010-010-0034-1
- [12] Sova M., Cosine operator functions, Dissertationes Math. (Rozprawy Mat.) 49 (1966), 1–47
- [13] Smajdor A., Iteration of multivalued functions, Prace Naukowe Uniwersytetu Slaskiego w Katowicach Nr 759, Uniwersytet Slaski w Katowicach 1985 Zbl0595.20070
- [14] Smajdor A., On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271–280 Zbl0946.39013
- [15] Smajdor A., Hukuhara’s derivative and concave iteration semigrups of linear set-valued functions, J. Appl. Anal. 8 (2002), 297–305 http://dx.doi.org/10.1515/JAA.2002.297 Zbl1026.39008
- [16] Smajdor A., Hukuhara’s differentiable iteration semigrups of linear set-valued functions, Ann. Polon. Math. 83(1) (2004), 1–10 http://dx.doi.org/10.4064/ap83-1-1 Zbl1056.39036
- [17] Trevis C.C., Webb G.F., Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32(3–4) (1978), 75–96 http://dx.doi.org/10.1007/BF01902205
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.