Commutativity of set-valued cosine families

Andrzej Smajdor; Wilhelmina Smajdor

Open Mathematics (2014)

  • Volume: 12, Issue: 12, page 1871-1881
  • ISSN: 2391-5455

Abstract

top
Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then F t F s ( x ) = F s F t ( x ) f o r s , t 0 a n d x K .

How to cite

top

Andrzej Smajdor, and Wilhelmina Smajdor. "Commutativity of set-valued cosine families." Open Mathematics 12.12 (2014): 1871-1881. <http://eudml.org/doc/269624>.

@article{AndrzejSmajdor2014,
abstract = {Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then $F_t \circ F_s (x) = F_s \circ F_t (x)fors,t \geqslant 0andx \in K$.},
author = {Andrzej Smajdor, Wilhelmina Smajdor},
journal = {Open Mathematics},
keywords = {Cosine and sine families of set-valued functions; The second order set-valued differential problem; Commutative cosine families; cosine and sine families of set-valued functions; the second order set-valued differential problem; commutative cosine families},
language = {eng},
number = {12},
pages = {1871-1881},
title = {Commutativity of set-valued cosine families},
url = {http://eudml.org/doc/269624},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Andrzej Smajdor
AU - Wilhelmina Smajdor
TI - Commutativity of set-valued cosine families
JO - Open Mathematics
PY - 2014
VL - 12
IS - 12
SP - 1871
EP - 1881
AB - Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then $F_t \circ F_s (x) = F_s \circ F_t (x)fors,t \geqslant 0andx \in K$.
LA - eng
KW - Cosine and sine families of set-valued functions; The second order set-valued differential problem; Commutative cosine families; cosine and sine families of set-valued functions; the second order set-valued differential problem; commutative cosine families
UR - http://eudml.org/doc/269624
ER -

References

top
  1. [1] Aghajani M., Nourouzi K., On the regular cosine family of linear correspondences, Aequationes Math. 83 (2012), 215–221 http://dx.doi.org/10.1007/s00010-011-0112-z Zbl1257.47006
  2. [2] Edgar G.A., Measure, Topology and Fractal Geometry, Undergrad.Texts Math., Springer-Verlag New York Inc., New York, 1990 http://dx.doi.org/10.1007/978-1-4757-4134-6 
  3. [3] Łojasiewicz S., An Introduction to the Theory of Real Functions, Wiley, Chichester - New York - Brisbane - Toronto - Singapore 1988 
  4. [4] Mainka-Niemczyk E., Integral representation of set-valued sine families, J. Appl. Anal. 18(2) (2012), 243–258 http://dx.doi.org/10.1515/jaa-2012-0016 Zbl1276.26055
  5. [5] Mainka-Niemczyk E., Multivalued second order differential problem, Ann. Univ. Paedagog. Crac. Stud. Math. 11 (2012), 53–67 Zbl1298.49024
  6. [6] Mainka-Niemczyk E., Some properties of set-valued sine families, Opuscula Math. 32(1) (2012), 157–168 http://dx.doi.org/10.7494/OpMath.2012.32.1.159 Zbl1245.26014
  7. [7] Nikodem K., On concave and midpoint concave set-valued functions, Glasnik Mat. 22(42)(1987), 69–76 Zbl0642.39006
  8. [8] Piszczek M., Integral representations of convex and concave set-valued functions, Demonstratio Math. 35 (2002), 727–742 Zbl1025.28005
  9. [9] Piszczek M., Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Peadagog. Crac. Stud. Math. 5 (2006), 87–98 Zbl1156.26308
  10. [10] Piszczek M., On multivalued cosine families, J. Appl. Anal. 14 (2007), 57–76 Zbl1131.26019
  11. [11] Piszczek M., On multivalued iteration semigroups, Aequationes Math. 81 (2011), 97–108 http://dx.doi.org/10.1007/s00010-010-0034-1 
  12. [12] Sova M., Cosine operator functions, Dissertationes Math. (Rozprawy Mat.) 49 (1966), 1–47 
  13. [13] Smajdor A., Iteration of multivalued functions, Prace Naukowe Uniwersytetu Slaskiego w Katowicach Nr 759, Uniwersytet Slaski w Katowicach 1985 Zbl0595.20070
  14. [14] Smajdor A., On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271–280 Zbl0946.39013
  15. [15] Smajdor A., Hukuhara’s derivative and concave iteration semigrups of linear set-valued functions, J. Appl. Anal. 8 (2002), 297–305 http://dx.doi.org/10.1515/JAA.2002.297 Zbl1026.39008
  16. [16] Smajdor A., Hukuhara’s differentiable iteration semigrups of linear set-valued functions, Ann. Polon. Math. 83(1) (2004), 1–10 http://dx.doi.org/10.4064/ap83-1-1 Zbl1056.39036
  17. [17] Trevis C.C., Webb G.F., Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32(3–4) (1978), 75–96 http://dx.doi.org/10.1007/BF01902205 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.