A reverse engineering approach to the Weil representation
Anne-Marie Aubert; Tomasz Przebinda
Open Mathematics (2014)
- Volume: 12, Issue: 10, page 1500-1585
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAnne-Marie Aubert, and Tomasz Przebinda. "A reverse engineering approach to the Weil representation." Open Mathematics 12.10 (2014): 1500-1585. <http://eudml.org/doc/269632>.
@article{Anne2014,
abstract = {We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.},
author = {Anne-Marie Aubert, Tomasz Przebinda},
journal = {Open Mathematics},
keywords = {Weil representation; Oscillator representation; Metaplectic representation; oscillator representation; metaplectic representation},
language = {eng},
number = {10},
pages = {1500-1585},
title = {A reverse engineering approach to the Weil representation},
url = {http://eudml.org/doc/269632},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Anne-Marie Aubert
AU - Tomasz Przebinda
TI - A reverse engineering approach to the Weil representation
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1500
EP - 1585
AB - We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.
LA - eng
KW - Weil representation; Oscillator representation; Metaplectic representation; oscillator representation; metaplectic representation
UR - http://eudml.org/doc/269632
ER -
References
top- [1] Aubert A.-M., Michel J., Rouqier R., Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J., 1996, 83, 353–397. http://dx.doi.org/10.1215/S0012-7094-96-08312-X
- [2] Cliff G., McNeilly D., Szechtman F., Weil representations of symplectic groups over rings, J. London Math. Soc. (2), 2000, 62(2), 423–436. http://dx.doi.org/10.1112/S0024610700001381 Zbl1037.20044
- [3] Dieudonné J., Éléments d’Analyse, Gauthier-Villars Éditeur, 1971.
- [4] Folland G. B., Real analysis: Modern techniques and their applications, 2nd Edition. Books. Published: 26 October 2012. Zbl0924.28001
- [5] Gérardin P., The Weil representations associated to finite fields, J. of Algebra, 1977, 46, 54–101. http://dx.doi.org/10.1016/0021-8693(77)90394-5
- [6] Gurevich S., Hadani R., The geometric Weil representation. Selecta Math. N.S., 2007, 13, 465–481. http://dx.doi.org/10.1007/s00029-007-0047-3 Zbl1163.22004
- [7] Gurevich S., Hadani R., Quantization of symplectic vector spaces over finite fields, J. Symplectic Geom., 2009, 7, 475–502. http://dx.doi.org/10.4310/JSG.2009.v7.n4.a4 Zbl1220.53094
- [8] Gurevich S., Hadani R., Howe R., Quadratic reciprocity and the sign of the Gauss sum via the finite the Weil representation. Int. Math. Res. Not. 2010, 3729–3745. Zbl1231.11093
- [9] Gutiérrez L., Pantoja J., Soto-Andrade J., On generalized Weil representations over involutive rings, Contemporary Mathematics 544, 2011, 109–123. http://dx.doi.org/10.1090/conm/544/10751 Zbl1241.20057
- [10] Harish-Chandra. Invariant Eigendistributions on a Semisimple Lie groups. Trans. Amer. Math. Soc, 1965, 119, 457–508. http://dx.doi.org/10.1090/S0002-9947-1965-0180631-0 Zbl0199.46402
- [11] Harish-Chandra, Harmonic analysis on reductive p-adic groups, 1970, Bull. Amer. Math. Soc., 76, 529–551. http://dx.doi.org/10.1090/S0002-9904-1970-12442-9 Zbl0212.15101
- [12] Hartshorne R., Algebraic Geometry. Springer-Verlag, 1977. Graduate Text in Mathematics: 52.
- [13] Hörmander L., The analysis of linear partial differential operators I, Springer Verlag, 1983. http://dx.doi.org/10.1007/978-3-642-96750-4 Zbl0521.35001
- [14] Hörmander L., The analysis of linear partial differential operators III, Springer Verlag, 1985. Zbl0601.35001
- [15] Howe R., Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory, preprint, 1973.
- [16] Howe R., θ-series and invariant theory, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, 275–285, Amer. Math. Soc., Providence, R.I., 1979.
- [17] Howe R., Quantum mechanics and partial differential equations. J. Funct. Anal., 1980, 38, 188–254. http://dx.doi.org/10.1016/0022-1236(80)90064-6
- [18] Howe R., The oscillator semigroup, Proc. Symp. Pure Math., Amer. Math. Soc., 48, 61–132, 1988. http://dx.doi.org/10.1090/pspum/048/974332
- [19] Howe R., Transcending classical invariant theory, J. Amer. Math. Soc. 2, 1989, 2, 535–552. http://dx.doi.org/10.1090/S0894-0347-1989-0985172-6 Zbl0716.22006
- [20] Jacobson N., Basic Algebra II, W. H. Freeman and Company, San Francisco, 1980.
- [21] Johnson R., Pantoja J., Weil representation of SL*(2, A) for a locally profinite ring A with involution, J. Lie Theory 14, 2004, 1–9. Zbl1054.22019
- [22] Kashiwara M., Vergne M., On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math., 1978, 44, 1–47. http://dx.doi.org/10.1007/BF01389900 Zbl0375.22009
- [23] Kirillov A. A., Elements of the theory of representations, Nauka, Moscow, 1978.
- [24] Lion G., Vergne M., The Weil representation, Maslov index and theta series. Birkhéuser, Boston, 1980. Zbl0444.22005
- [25] Matsumoto H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. (4), 1969, 2(1), 1–62. Zbl0261.20025
- [26] Müller D., Ricci F., Analysis of second order differential operators on Heisenberg group I. Invent. Math., 1990, 101, 545–582. http://dx.doi.org/10.1007/BF01231515 Zbl0742.43006
- [27] Nazarov M., Neretin Y., Olshanskii G., Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie. C. R. Acad. Sci. Paris Sr. I Math. 1989, 309, 443–446 (in French). Zbl0709.43007
- [28] Neretin Y., Lectures on Gaussian integral operators and classical groups. EMS Series of Lectures in Mathematics European Mathematical Society (EMS), Zurich, 2011. http://dx.doi.org/10.4171/080
- [29] Neretin Y., On a semigroup of operators in the boson Fock space. (Russian) Funktsional. Anal. i Prilozhen. 24 (1990), 63–73, 96; translation in Funct. Anal. Appl. 24 (1990), 135–144.
- [30] Neuhauser M., An explicit construction of the metaplectic representation over a finite field, Journal of Lie Theory 12, 2002, 15–30. Zbl1026.22018
- [31] Perrin P., Représentations de Schrödinger, Indice de Maslov et groupe métaplectique, Non Commutative Harmonic Analysis and Lie Groups 880 (1981), 370–407. http://dx.doi.org/10.1007/BFb0090417 Zbl0462.22008
- [32] Prasad A., On character values and decomposition of the Weil representation associated to a finite abelian group, J. Analysis, 17, 2009, 73–86. Zbl1291.11084
- [33] Ranga Rao R., On some explicit formulas in the theory of Weil representations. Pacific Journal of Mathematics, 1993, 157, 335–371. http://dx.doi.org/10.2140/pjm.1993.157.335 Zbl0794.58017
- [34] Rudin W., Principles of mathematical analysis, McGraw-Hill, Inc, 1964.
- [35] Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc., 1962, 340, 309–321. Zbl0171.46901
- [36] Thomas T., Character of the Weil representation, 2008, 77(2), 221–239. Zbl1195.11058
- [37] Thomas T., The Weil representation, the Weyl transform, and transfer factor, 2009.
- [38] Von Neumann J., Mathematical fundations of quantum mechanics, translated by Robert T. Beyer, Princeton University Press, 1955.
- [39] Waldspurger J.-L., Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc., 2, 1989, 267–324.
- [40] Wallach N., Real Reductive Groups I, Academic Press, 1988. Zbl0666.22002
- [41] Warner, G., Harmonic analysis on semisimple Lie groups. I, Springer-Verlag, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 188. http://dx.doi.org/10.1007/978-3-642-51640-5
- [42] Weil A., Sur certains groupes d’opérateurs unitaires, 1964, Acta Math., 111, 143–211. http://dx.doi.org/10.1007/BF02391012 Zbl0203.03305
- [43] Weil A., Basic Number Theory, Springer-Verlag, 1973. Classics in Mathematics. http://dx.doi.org/10.1007/978-3-662-05978-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.