A reverse engineering approach to the Weil representation

Anne-Marie Aubert; Tomasz Przebinda

Open Mathematics (2014)

  • Volume: 12, Issue: 10, page 1500-1585
  • ISSN: 2391-5455

Abstract

top
We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.

How to cite

top

Anne-Marie Aubert, and Tomasz Przebinda. "A reverse engineering approach to the Weil representation." Open Mathematics 12.10 (2014): 1500-1585. <http://eudml.org/doc/269632>.

@article{Anne2014,
abstract = {We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.},
author = {Anne-Marie Aubert, Tomasz Przebinda},
journal = {Open Mathematics},
keywords = {Weil representation; Oscillator representation; Metaplectic representation; oscillator representation; metaplectic representation},
language = {eng},
number = {10},
pages = {1500-1585},
title = {A reverse engineering approach to the Weil representation},
url = {http://eudml.org/doc/269632},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Anne-Marie Aubert
AU - Tomasz Przebinda
TI - A reverse engineering approach to the Weil representation
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1500
EP - 1585
AB - We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.
LA - eng
KW - Weil representation; Oscillator representation; Metaplectic representation; oscillator representation; metaplectic representation
UR - http://eudml.org/doc/269632
ER -

References

top
  1. [1] Aubert A.-M., Michel J., Rouqier R., Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J., 1996, 83, 353–397. http://dx.doi.org/10.1215/S0012-7094-96-08312-X 
  2. [2] Cliff G., McNeilly D., Szechtman F., Weil representations of symplectic groups over rings, J. London Math. Soc. (2), 2000, 62(2), 423–436. http://dx.doi.org/10.1112/S0024610700001381 Zbl1037.20044
  3. [3] Dieudonné J., Éléments d’Analyse, Gauthier-Villars Éditeur, 1971. 
  4. [4] Folland G. B., Real analysis: Modern techniques and their applications, 2nd Edition. Books. Published: 26 October 2012. Zbl0924.28001
  5. [5] Gérardin P., The Weil representations associated to finite fields, J. of Algebra, 1977, 46, 54–101. http://dx.doi.org/10.1016/0021-8693(77)90394-5 
  6. [6] Gurevich S., Hadani R., The geometric Weil representation. Selecta Math. N.S., 2007, 13, 465–481. http://dx.doi.org/10.1007/s00029-007-0047-3 Zbl1163.22004
  7. [7] Gurevich S., Hadani R., Quantization of symplectic vector spaces over finite fields, J. Symplectic Geom., 2009, 7, 475–502. http://dx.doi.org/10.4310/JSG.2009.v7.n4.a4 Zbl1220.53094
  8. [8] Gurevich S., Hadani R., Howe R., Quadratic reciprocity and the sign of the Gauss sum via the finite the Weil representation. Int. Math. Res. Not. 2010, 3729–3745. Zbl1231.11093
  9. [9] Gutiérrez L., Pantoja J., Soto-Andrade J., On generalized Weil representations over involutive rings, Contemporary Mathematics 544, 2011, 109–123. http://dx.doi.org/10.1090/conm/544/10751 Zbl1241.20057
  10. [10] Harish-Chandra. Invariant Eigendistributions on a Semisimple Lie groups. Trans. Amer. Math. Soc, 1965, 119, 457–508. http://dx.doi.org/10.1090/S0002-9947-1965-0180631-0 Zbl0199.46402
  11. [11] Harish-Chandra, Harmonic analysis on reductive p-adic groups, 1970, Bull. Amer. Math. Soc., 76, 529–551. http://dx.doi.org/10.1090/S0002-9904-1970-12442-9 Zbl0212.15101
  12. [12] Hartshorne R., Algebraic Geometry. Springer-Verlag, 1977. Graduate Text in Mathematics: 52. 
  13. [13] Hörmander L., The analysis of linear partial differential operators I, Springer Verlag, 1983. http://dx.doi.org/10.1007/978-3-642-96750-4 Zbl0521.35001
  14. [14] Hörmander L., The analysis of linear partial differential operators III, Springer Verlag, 1985. Zbl0601.35001
  15. [15] Howe R., Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory, preprint, 1973. 
  16. [16] Howe R., θ-series and invariant theory, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, 275–285, Amer. Math. Soc., Providence, R.I., 1979. 
  17. [17] Howe R., Quantum mechanics and partial differential equations. J. Funct. Anal., 1980, 38, 188–254. http://dx.doi.org/10.1016/0022-1236(80)90064-6 
  18. [18] Howe R., The oscillator semigroup, Proc. Symp. Pure Math., Amer. Math. Soc., 48, 61–132, 1988. http://dx.doi.org/10.1090/pspum/048/974332 
  19. [19] Howe R., Transcending classical invariant theory, J. Amer. Math. Soc. 2, 1989, 2, 535–552. http://dx.doi.org/10.1090/S0894-0347-1989-0985172-6 Zbl0716.22006
  20. [20] Jacobson N., Basic Algebra II, W. H. Freeman and Company, San Francisco, 1980. 
  21. [21] Johnson R., Pantoja J., Weil representation of SL*(2, A) for a locally profinite ring A with involution, J. Lie Theory 14, 2004, 1–9. Zbl1054.22019
  22. [22] Kashiwara M., Vergne M., On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math., 1978, 44, 1–47. http://dx.doi.org/10.1007/BF01389900 Zbl0375.22009
  23. [23] Kirillov A. A., Elements of the theory of representations, Nauka, Moscow, 1978. 
  24. [24] Lion G., Vergne M., The Weil representation, Maslov index and theta series. Birkhéuser, Boston, 1980. Zbl0444.22005
  25. [25] Matsumoto H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. (4), 1969, 2(1), 1–62. Zbl0261.20025
  26. [26] Müller D., Ricci F., Analysis of second order differential operators on Heisenberg group I. Invent. Math., 1990, 101, 545–582. http://dx.doi.org/10.1007/BF01231515 Zbl0742.43006
  27. [27] Nazarov M., Neretin Y., Olshanskii G., Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie. C. R. Acad. Sci. Paris Sr. I Math. 1989, 309, 443–446 (in French). Zbl0709.43007
  28. [28] Neretin Y., Lectures on Gaussian integral operators and classical groups. EMS Series of Lectures in Mathematics European Mathematical Society (EMS), Zurich, 2011. http://dx.doi.org/10.4171/080 
  29. [29] Neretin Y., On a semigroup of operators in the boson Fock space. (Russian) Funktsional. Anal. i Prilozhen. 24 (1990), 63–73, 96; translation in Funct. Anal. Appl. 24 (1990), 135–144. 
  30. [30] Neuhauser M., An explicit construction of the metaplectic representation over a finite field, Journal of Lie Theory 12, 2002, 15–30. Zbl1026.22018
  31. [31] Perrin P., Représentations de Schrödinger, Indice de Maslov et groupe métaplectique, Non Commutative Harmonic Analysis and Lie Groups 880 (1981), 370–407. http://dx.doi.org/10.1007/BFb0090417 Zbl0462.22008
  32. [32] Prasad A., On character values and decomposition of the Weil representation associated to a finite abelian group, J. Analysis, 17, 2009, 73–86. Zbl1291.11084
  33. [33] Ranga Rao R., On some explicit formulas in the theory of Weil representations. Pacific Journal of Mathematics, 1993, 157, 335–371. http://dx.doi.org/10.2140/pjm.1993.157.335 Zbl0794.58017
  34. [34] Rudin W., Principles of mathematical analysis, McGraw-Hill, Inc, 1964. 
  35. [35] Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc., 1962, 340, 309–321. Zbl0171.46901
  36. [36] Thomas T., Character of the Weil representation, 2008, 77(2), 221–239. Zbl1195.11058
  37. [37] Thomas T., The Weil representation, the Weyl transform, and transfer factor, 2009. 
  38. [38] Von Neumann J., Mathematical fundations of quantum mechanics, translated by Robert T. Beyer, Princeton University Press, 1955. 
  39. [39] Waldspurger J.-L., Démonstration d’une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc., 2, 1989, 267–324. 
  40. [40] Wallach N., Real Reductive Groups I, Academic Press, 1988. Zbl0666.22002
  41. [41] Warner, G., Harmonic analysis on semisimple Lie groups. I, Springer-Verlag, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 188. http://dx.doi.org/10.1007/978-3-642-51640-5 
  42. [42] Weil A., Sur certains groupes d’opérateurs unitaires, 1964, Acta Math., 111, 143–211. http://dx.doi.org/10.1007/BF02391012 Zbl0203.03305
  43. [43] Weil A., Basic Number Theory, Springer-Verlag, 1973. Classics in Mathematics. http://dx.doi.org/10.1007/978-3-662-05978-4 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.