Orbit algebras that are invariant under stable equivalences of Morita type

Zygmunt Pogorzały

Open Mathematics (2014)

  • Volume: 12, Issue: 6, page 813-823
  • ISSN: 2391-5455

Abstract

top
In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.

How to cite

top

Zygmunt Pogorzały. "Orbit algebras that are invariant under stable equivalences of Morita type." Open Mathematics 12.6 (2014): 813-823. <http://eudml.org/doc/269640>.

@article{ZygmuntPogorzały2014,
abstract = {In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.},
author = {Zygmunt Pogorzały},
journal = {Open Mathematics},
keywords = {Stable equivalence of Morita type; Self-injective algebra; Orbit algebra of a bimodule; stable equivalences of Morita type; self-injective algebras; orbit algebras of bimodules},
language = {eng},
number = {6},
pages = {813-823},
title = {Orbit algebras that are invariant under stable equivalences of Morita type},
url = {http://eudml.org/doc/269640},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Zygmunt Pogorzały
TI - Orbit algebras that are invariant under stable equivalences of Morita type
JO - Open Mathematics
PY - 2014
VL - 12
IS - 6
SP - 813
EP - 823
AB - In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.
LA - eng
KW - Stable equivalence of Morita type; Self-injective algebra; Orbit algebra of a bimodule; stable equivalences of Morita type; self-injective algebras; orbit algebras of bimodules
UR - http://eudml.org/doc/269640
ER -

References

top
  1. [1] Assem I., Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras, I, London Math. Soc. Stud. Texts, 65, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511614309 Zbl1092.16001
  2. [2] Auslander M., Reiten I., Representation theory of Artin algebras III. Almost split sequences, Comm. Algebra, 1975, 3(3), 239–294 http://dx.doi.org/10.1080/00927877508822046 Zbl0331.16027
  3. [3] Bergh P.A., Orbit algebras and periodicity, Colloq. Math., 2009, 114(2), 245–252 http://dx.doi.org/10.4064/cm114-2-7 Zbl1187.16014
  4. [4] Brenner S., Butler M.C.R., King A.D., Periodic algebras which are almost Koszul, Algebr. Represent. Theory, 2002, 5(4), 331–367 http://dx.doi.org/10.1023/A:1020146502185 Zbl1056.16003
  5. [5] Broué M., Equivalences of blocks of group algebras, In: Finite-Dimensional Algebras and Related Topics, Ottawa, August 10–18, 1992, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer, Dordrecht, 1994, 1–26 
  6. [6] Dugas A., Periodic resolutions and self-injective algebras of finite type, J. Pure Appl. Algebra, 2010, 214(6), 990–1000 http://dx.doi.org/10.1016/j.jpaa.2009.09.012 Zbl1214.16006
  7. [7] Green E.L., Snashall N., Solberg Ø., The Hochschild cohomology ring of a selfinjective algebra of finite representation type, Proc. Amer. Math. Soc., 2003, 131(11), 3387–3393 http://dx.doi.org/10.1090/S0002-9939-03-06912-0 Zbl1061.16017
  8. [8] Happel D., Hochschild cohomology of finite-dimensional algebras, In: Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année, Paris, 1987/1988, Lecture Notes in Math., 1404, Springer, Berlin, 1989, 108–126 http://dx.doi.org/10.1007/BFb0084073 
  9. [9] Heller A., The loop-space functor in homological algebra, Trans. Amer. Math. Soc., 1960, 96, 382–394 http://dx.doi.org/10.1090/S0002-9947-1960-0116045-4 Zbl0096.25502
  10. [10] Kerner O., Minimal approximations, orbital elementary modules, and orbit algebras of regular modules, J. Algebra, 1999, 217(2), 528–554 http://dx.doi.org/10.1006/jabr.1998.7815 
  11. [11] Lenzing H., Wild canonical algebras and rings of automorphic forms, In: Finite-Dimensional Algebras and Related Topics, Ottawa, August 10–18, 1992, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer, Dordrecht, 1994, 191–212 Zbl0895.16004
  12. [12] Linckelmann M., Stable equivalences of Morita type for self-injective algebras and p-groups, Math. Z., 1996, 223(1), 87–100 http://dx.doi.org/10.1007/BF02621590 Zbl0866.16004
  13. [13] Pogorzały Z., Left-right projective bimodules and stable equivalences of Morita type, Colloq. Math., 2001, 88(2), 243–255 http://dx.doi.org/10.4064/cm88-2-6 Zbl0985.16004
  14. [14] Pogorzały Z., Invariance of Hochschild cohomology algebras under stable equivalences of Morita type, J. Math. Soc. Japan, 2001, 53(4), 913–918 http://dx.doi.org/10.2969/jmsj/05340913 Zbl1043.16008
  15. [15] Pogorzały Z., A new invariant of stable equivalences of Morita type, Proc. Amer. Math. Soc., 2002, 131(2), 343–349 http://dx.doi.org/10.1090/S0002-9939-02-06553-X Zbl1062.16003
  16. [16] Pogorzały Z., On Galois coverings of the enveloping algebras of self-injective Nakayama algebras, Comm. Algebra, 2003, 31(6), 2985–2999 http://dx.doi.org/10.1081/AGB-120021904 Zbl1050.16011
  17. [17] Pogorzały Z., On the Auslander-Reiten periodicity of self-injective algebras, Bull. London Math. Soc., 2004, 36(2), 156–168 http://dx.doi.org/10.1112/S0024609303002716 Zbl1067.16031
  18. [18] Rickard J., Derived equivalences as derived functors, J. London Math. Soc., 1991, 43(1), 37–48 http://dx.doi.org/10.1112/jlms/s2-43.1.37 Zbl0683.16030
  19. [19] Schulz R., Boundedness and periodicity of modules over QF rings, J. Algebra, 1986, 101(2), 450–469 http://dx.doi.org/10.1016/0021-8693(86)90204-8 
  20. [20] Snashall N., Solberg Ø., Support varieties and Hochschild cohomology rings, Proc. London Math. Soc., 2004, 88(3), 705–732 http://dx.doi.org/10.1112/S002461150301459X Zbl1067.16010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.