Metric subregularity of order q and the solving of inclusions
Michaël Gaydu; Michel Geoffroy; Célia Jean-Alexis
Open Mathematics (2011)
- Volume: 9, Issue: 1, page 147-161
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMichaël Gaydu, Michel Geoffroy, and Célia Jean-Alexis. "Metric subregularity of order q and the solving of inclusions." Open Mathematics 9.1 (2011): 147-161. <http://eudml.org/doc/269641>.
@article{MichaëlGaydu2011,
abstract = {We consider some metric regularity properties of order q for set-valued mappings and we establish several characterizations of these concepts in terms of Hölder-like properties of the inverses of the mappings considered. In addition, we show that even if these properties are weaker than the classical notions of regularity for set-valued maps, they allow us to solve variational inclusions under mild assumptions.},
author = {Michaël Gaydu, Michel Geoffroy, Célia Jean-Alexis},
journal = {Open Mathematics},
keywords = {Metric regularity of order q; Calmness of order q; Hölder metric regularity; Covering property; Variational inclusions; Successive approximations; metric regularity of order ; calmness of order ; covering property; variational inclusions; successive approximations},
language = {eng},
number = {1},
pages = {147-161},
title = {Metric subregularity of order q and the solving of inclusions},
url = {http://eudml.org/doc/269641},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Michaël Gaydu
AU - Michel Geoffroy
AU - Célia Jean-Alexis
TI - Metric subregularity of order q and the solving of inclusions
JO - Open Mathematics
PY - 2011
VL - 9
IS - 1
SP - 147
EP - 161
AB - We consider some metric regularity properties of order q for set-valued mappings and we establish several characterizations of these concepts in terms of Hölder-like properties of the inverses of the mappings considered. In addition, we show that even if these properties are weaker than the classical notions of regularity for set-valued maps, they allow us to solve variational inclusions under mild assumptions.
LA - eng
KW - Metric regularity of order q; Calmness of order q; Hölder metric regularity; Covering property; Variational inclusions; Successive approximations; metric regularity of order ; calmness of order ; covering property; variational inclusions; successive approximations
UR - http://eudml.org/doc/269641
ER -
References
top- [1] Alt W., Lipschitzian perturbations of infinite optimization problems, In: Mathematical Programming with Data Perturbations, II, Washington D.C., 1980, Lecture Notes in Pure and Appl. Math., 85, Dekker, New York, 1983, 7–21
- [2] Aragón Artacho F.J., Dontchev A.L., Geoffroy M.H., Convergence of the proximal point method for metrically regular mappings, In: CSVAA 2004 - Control Set-Valued Analysis and Applications, ESAIM Proc., 17, EDP Sci., Les Ulis, 2007, 1–8 Zbl1235.90180
- [3] Aragón Artacho F.J., Geoffroy M.H., Characterization of metric regularity of subdifferentials, J. Convex Anal., 2008, 15(2), 365–380 Zbl1146.49012
- [4] Azé D., A unified theory for metric regularity of multifunctions, J. Convex Anal., 2006, 13(2), 225–252 Zbl1101.49013
- [5] Banach S., Théorie des Opérations Linéaires, Monografje Matematyczne, Warsaw, 1932
- [6] Borwein J.M., Zhuang D.M., Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps, J. Math. Anal. Appl., 1988, 134(2), 441–459 http://dx.doi.org/10.1016/0022-247X(88)90034-0 Zbl0654.49004
- [7] Dontchev A.L., Local analysis of a Newton-type method based on partial linearization, In: The Mathematics of Numerical Analysis, Park City, 1995, Lectures in Appl. Math., 32, AMS, Providence, 1996, 295–306 Zbl0856.65064
- [8] Dontchev A.L., Rockafellar R.T., Implicit Functions and Solution Mappings, Springer Monogr. Math., Springer, Dordrecht, 2009 Zbl1178.26001
- [9] Ferris M.C., Pang J.S., Engineering and economic applications of complementarity problems, SIAM Rev., 1997, 39(4), 669–713 http://dx.doi.org/10.1137/S0036144595285963 Zbl0891.90158
- [10] Fischer A., Local behavior of an iterative framework for generalized equations with nonisolated solutions, Math. Program., 2002, 94A(1), 91–124 http://dx.doi.org/10.1007/s10107-002-0364-4 Zbl1023.90067
- [11] Frankowska H., An open mapping principle for set-valued maps, J. Math. Anal. Appl., 1987, 127(1), 172–180 http://dx.doi.org/10.1016/0022-247X(87)90149-1
- [12] Frankowska H., Some inverse mapping theorems. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1990, 7(3), 183–234 Zbl0727.26014
- [13] Frankowska H., Quincampoix M., Hölder Metric Regularity of Set-Valued Maps, Math. Program. (in press), DOI: 10.1007/s10107-010-0401-7 Zbl1262.90173
- [14] Geoffroy M.H., Jean-Alexis C., Piétrus A., A Hummel-Seebeck type method for variational inclusions, Optimization, 2009, 58(4), 389–399 http://dx.doi.org/10.1080/02331930701763223 Zbl1186.47053
- [15] Geoffroy M.H., Pietrus A., A general iterative procedure for solving nonsmooth generalized equations, Comput. Optim. Appl., 2005, 31(1), 57–67 http://dx.doi.org/10.1007/s10589-005-1104-5 Zbl1114.90151
- [16] Henrion R., Outrata J., Surowiec T., Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model, preprint available at http://www.matheon.de/preprints/ 5511_sstat.pdf Zbl1281.90056
- [17] Ioffe A.D., Metric regularity and subdifferential calculus, Russian Math. Surveys, 2000, 55(3), 501–558 http://dx.doi.org/10.1070/RM2000v055n03ABEH000292 Zbl0979.49017
- [18] Klatte D., On quantitative stability for non-isolated minima, Control Cybernet., 1994, 23(1–2), 183–200 Zbl0808.90120
- [19] Kummer B., Inclusions in general spaces: Hoelder stability, solution schemes and Ekeland's principle, J. Math. Anal. Appl., 2009, 358(2), 327–344 http://dx.doi.org/10.1016/j.jmaa.2009.04.060 Zbl1165.49017
- [20] Leventhal D., Metric subregularity and the proximal point method, J. Math. Anal. Appl., 2009, 360(2), 681–688 http://dx.doi.org/10.1016/j.jmaa.2009.07.012 Zbl1175.49028
- [21] Mordukhovich B.S., Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc., 1993, 340(1), 1–35 http://dx.doi.org/10.2307/2154544 Zbl0791.49018
- [22] Mordukhovich B.S., Variational Analysis and Generalized Differentiation I: Basic Theory, Grundlehren Math. Wiss., 330, Springer, Berlin, 2006
- [23] Penot J.-P., Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal., 1989, 13(6), 629–643 http://dx.doi.org/10.1016/0362-546X(89)90083-7
- [24] Robinson S.M., Generalized equations, In: Mathematical Programming: the State of the Art, Bonn, 1982, Springer, Berlin, 1983, 346–367
- [25] Robinson S.M., Newton's method for a class of nonsmooth functions, Set-Valued Anal., 1994, 2(1–2), 291–305 http://dx.doi.org/10.1007/BF01027107
- [26] Walras L., Elements of Pure Economics, Alen and Unwin, London, 1954
- [27] Wardrop J.G., Some theoritical aspects of road traffic research, In: Proceedings of the Institute of Civil Engineers, Part II, 1952, 325–378
- [28] Yen N.D., Yao J.-C., Kien B.T., Covering properties at positive-order rates of multifunctions and some related topics, J. Math. Anal. Appl., 2008, 338(1), 467–478 http://dx.doi.org/10.1016/j.jmaa.2007.05.041 Zbl1137.47038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.