Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms
Open Mathematics (2014)
- Volume: 12, Issue: 8, page 1198-1213
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAdam Osękowski. "Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms." Open Mathematics 12.8 (2014): 1198-1213. <http://eudml.org/doc/269645>.
@article{AdamOsękowski2014,
abstract = {We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.},
author = {Adam Osękowski},
journal = {Open Mathematics},
keywords = {Fourier multiplier; Singular integral; Martingale; singular integral; martingale},
language = {eng},
number = {8},
pages = {1198-1213},
title = {Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms},
url = {http://eudml.org/doc/269645},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Adam Osękowski
TI - Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1198
EP - 1213
AB - We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.
LA - eng
KW - Fourier multiplier; Singular integral; Martingale; singular integral; martingale
UR - http://eudml.org/doc/269645
ER -
References
top- [1] Astala K., Faraco D., Székelyhidi L. Jr., Convex integration and the Lp theory of elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2008, 7(1), 1–50 Zbl1164.30014
- [2] Bañuelos R., Bielaszewski A., Bogdan K., Fourier multipliers for non-symmetric Lévy processes, Banach Center Publ., 95, Polish Academy of Sciences, Warsaw, 2011, 9–25 Zbl1242.42008
- [3] Bañuelos R., Bogdan K., Lévy processes and Fourier multipliers, J. Funct. Anal., 2007, 250(1), 197–213 http://dx.doi.org/10.1016/j.jfa.2007.05.013 Zbl1123.42002
- [4] Bañuelos R., Osekowski A., Martingales and sharp bounds for Fourier multipliers, Ann. Acad. Sci. Fenn. Math., 2012, 37(1), 251–263 http://dx.doi.org/10.5186/aasfm.2012.3710 Zbl1266.42020
- [5] Bañuelos R., Wang G., Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J., 1995, 80(3), 575–600 http://dx.doi.org/10.1215/S0012-7094-95-08020-X Zbl0853.60040
- [6] Boros N., Székelyhidi L. Jr., Volberg A., Laminates meet Burkholder functions, J. Math. Pures Appl., 2013, 100(5), 687–700 http://dx.doi.org/10.1016/j.matpur.2013.01.017 Zbl1320.42010
- [7] Burkholder D.L., An extension of a classical martingale inequality, In: Probability Theory and Harmonic Analysis, Ohio, May 10–12, 1983, Monogr. Textbooks Pure Appl. Math., 98, Marcel Dekker, New York, 1986, 21–30
- [8] Choi K.P., A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in Lp(0, 1), Trans. Amer. Math. Soc., 1992, 330(2), 509–529 Zbl0747.60042
- [9] Conti S., Faraco D., Maggi F., A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., 2005, 175(2), 287–300 http://dx.doi.org/10.1007/s00205-004-0350-5 Zbl1080.49026
- [10] Davis B., On the weak type (1, 1) inequality for conjugate functions, Proc. Amer. Math. Soc., 1974, 44(2), 307–311 Zbl0259.42016
- [11] Dellacherie C., Meyer P.-A., Probabilities and Potential B, North-Holland Math. Stud., 72, North-Holland, Amsterdam, 1982
- [12] Geiss S., Mongomery-Smith S., Saksman E., On singular integral and martingale transforms, Trans. Amer. Math. Soc., 2010, 362(2), 553–575 http://dx.doi.org/10.1090/S0002-9947-09-04953-8 Zbl1196.60078
- [13] Iwaniec T., Martin G., Riesz transforms and related singular integrals, J. Reine Angew. Math., 1996, 473, 25–57 Zbl0847.42015
- [14] Janakiraman P., Best weak-type (p, p) constants, 1 < p < 2, for orthogonal harmonic functions and martingales, Illinois J. Math., 2004, 48(3), 909–921 Zbl1063.31002
- [15] Kirchheim B., Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003, available at http://www.mis.mpg.de/publications/other-series/ln/lecturenote-1603.html
- [16] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, 347–395 http://dx.doi.org/10.1007/978-3-642-55627-2_19
- [17] Müller S., Šverák V., Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math., 2003, 157(3), 715–742 http://dx.doi.org/10.4007/annals.2003.157.715 Zbl1083.35032
- [18] Osekowski A., Inequalities for dominated martingales, Bernoulli, 2007, 13(1), 54–79 http://dx.doi.org/10.3150/07-BEJ5151
- [19] Osekowski A., On relaxing the assumption of differential subordination in some martingale inequalities, Electron. Commun. Probab., 2011, 16, 9–21 http://dx.doi.org/10.1214/ECP.v16-1593 Zbl1231.60036
- [20] Osekowski A., Sharp weak type inequalities for the Haar system and related estimates for nonsymmetric martingale transforms, Proc. Amer. Math. Soc., 2012, 140(7), 2513–2526 http://dx.doi.org/10.1090/S0002-9939-2011-11093-1 Zbl1274.60137
- [21] Osekowski A., Sharp logarithmic inequalities for Riesz transforms, J. Funct. Anal., 2012, 263(1), 89–108 http://dx.doi.org/10.1016/j.jfa.2012.04.007 Zbl1247.42016
- [22] Osekowski A., Logarithmic inequalities for Fourier multipliers, Math. Z., 2013, 274(1–2), 515–530 http://dx.doi.org/10.1007/s00209-012-1083-z Zbl1272.42009
- [23] Pichorides S.K., On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math., 1972, 44, 165–179 Zbl0238.42007
- [24] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton University Press, Princeton, 1970 Zbl0207.13501
- [25] Székelyhidi L. Jr., Counterexamples to elliptic regularity and convex integration, In: The Interaction of Analysis and Geometry, Novosibirsk, August 23–September 3, 2004, Contemp. Math., 424, American Mathematical Society, Providence, 227–245
- [26] Wang G., Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities, Ann. Probab., 1995, 23(2), 522–551 http://dx.doi.org/10.1214/aop/1176988278 Zbl0832.60055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.