Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms

Adam Osękowski

Open Mathematics (2014)

  • Volume: 12, Issue: 8, page 1198-1213
  • ISSN: 2391-5455

Abstract

top
We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.

How to cite

top

Adam Osękowski. "Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms." Open Mathematics 12.8 (2014): 1198-1213. <http://eudml.org/doc/269645>.

@article{AdamOsękowski2014,
abstract = {We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.},
author = {Adam Osękowski},
journal = {Open Mathematics},
keywords = {Fourier multiplier; Singular integral; Martingale; singular integral; martingale},
language = {eng},
number = {8},
pages = {1198-1213},
title = {Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms},
url = {http://eudml.org/doc/269645},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Adam Osękowski
TI - Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1198
EP - 1213
AB - We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.
LA - eng
KW - Fourier multiplier; Singular integral; Martingale; singular integral; martingale
UR - http://eudml.org/doc/269645
ER -

References

top
  1. [1] Astala K., Faraco D., Székelyhidi L. Jr., Convex integration and the Lp theory of elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2008, 7(1), 1–50 Zbl1164.30014
  2. [2] Bañuelos R., Bielaszewski A., Bogdan K., Fourier multipliers for non-symmetric Lévy processes, Banach Center Publ., 95, Polish Academy of Sciences, Warsaw, 2011, 9–25 Zbl1242.42008
  3. [3] Bañuelos R., Bogdan K., Lévy processes and Fourier multipliers, J. Funct. Anal., 2007, 250(1), 197–213 http://dx.doi.org/10.1016/j.jfa.2007.05.013 Zbl1123.42002
  4. [4] Bañuelos R., Osekowski A., Martingales and sharp bounds for Fourier multipliers, Ann. Acad. Sci. Fenn. Math., 2012, 37(1), 251–263 http://dx.doi.org/10.5186/aasfm.2012.3710 Zbl1266.42020
  5. [5] Bañuelos R., Wang G., Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J., 1995, 80(3), 575–600 http://dx.doi.org/10.1215/S0012-7094-95-08020-X Zbl0853.60040
  6. [6] Boros N., Székelyhidi L. Jr., Volberg A., Laminates meet Burkholder functions, J. Math. Pures Appl., 2013, 100(5), 687–700 http://dx.doi.org/10.1016/j.matpur.2013.01.017 Zbl1320.42010
  7. [7] Burkholder D.L., An extension of a classical martingale inequality, In: Probability Theory and Harmonic Analysis, Ohio, May 10–12, 1983, Monogr. Textbooks Pure Appl. Math., 98, Marcel Dekker, New York, 1986, 21–30 
  8. [8] Choi K.P., A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in Lp(0, 1), Trans. Amer. Math. Soc., 1992, 330(2), 509–529 Zbl0747.60042
  9. [9] Conti S., Faraco D., Maggi F., A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., 2005, 175(2), 287–300 http://dx.doi.org/10.1007/s00205-004-0350-5 Zbl1080.49026
  10. [10] Davis B., On the weak type (1, 1) inequality for conjugate functions, Proc. Amer. Math. Soc., 1974, 44(2), 307–311 Zbl0259.42016
  11. [11] Dellacherie C., Meyer P.-A., Probabilities and Potential B, North-Holland Math. Stud., 72, North-Holland, Amsterdam, 1982 
  12. [12] Geiss S., Mongomery-Smith S., Saksman E., On singular integral and martingale transforms, Trans. Amer. Math. Soc., 2010, 362(2), 553–575 http://dx.doi.org/10.1090/S0002-9947-09-04953-8 Zbl1196.60078
  13. [13] Iwaniec T., Martin G., Riesz transforms and related singular integrals, J. Reine Angew. Math., 1996, 473, 25–57 Zbl0847.42015
  14. [14] Janakiraman P., Best weak-type (p, p) constants, 1 < p < 2, for orthogonal harmonic functions and martingales, Illinois J. Math., 2004, 48(3), 909–921 Zbl1063.31002
  15. [15] Kirchheim B., Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003, available at http://www.mis.mpg.de/publications/other-series/ln/lecturenote-1603.html 
  16. [16] Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, 347–395 http://dx.doi.org/10.1007/978-3-642-55627-2_19 
  17. [17] Müller S., Šverák V., Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math., 2003, 157(3), 715–742 http://dx.doi.org/10.4007/annals.2003.157.715 Zbl1083.35032
  18. [18] Osekowski A., Inequalities for dominated martingales, Bernoulli, 2007, 13(1), 54–79 http://dx.doi.org/10.3150/07-BEJ5151 
  19. [19] Osekowski A., On relaxing the assumption of differential subordination in some martingale inequalities, Electron. Commun. Probab., 2011, 16, 9–21 http://dx.doi.org/10.1214/ECP.v16-1593 Zbl1231.60036
  20. [20] Osekowski A., Sharp weak type inequalities for the Haar system and related estimates for nonsymmetric martingale transforms, Proc. Amer. Math. Soc., 2012, 140(7), 2513–2526 http://dx.doi.org/10.1090/S0002-9939-2011-11093-1 Zbl1274.60137
  21. [21] Osekowski A., Sharp logarithmic inequalities for Riesz transforms, J. Funct. Anal., 2012, 263(1), 89–108 http://dx.doi.org/10.1016/j.jfa.2012.04.007 Zbl1247.42016
  22. [22] Osekowski A., Logarithmic inequalities for Fourier multipliers, Math. Z., 2013, 274(1–2), 515–530 http://dx.doi.org/10.1007/s00209-012-1083-z Zbl1272.42009
  23. [23] Pichorides S.K., On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math., 1972, 44, 165–179 Zbl0238.42007
  24. [24] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton University Press, Princeton, 1970 Zbl0207.13501
  25. [25] Székelyhidi L. Jr., Counterexamples to elliptic regularity and convex integration, In: The Interaction of Analysis and Geometry, Novosibirsk, August 23–September 3, 2004, Contemp. Math., 424, American Mathematical Society, Providence, 227–245 
  26. [26] Wang G., Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities, Ann. Probab., 1995, 23(2), 522–551 http://dx.doi.org/10.1214/aop/1176988278 Zbl0832.60055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.