On presentations of Brauer-type monoids
Ganna Kudryavtseva; Volodymyr Mazorchuk
Open Mathematics (2006)
- Volume: 4, Issue: 3, page 413-434
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGanna Kudryavtseva, and Volodymyr Mazorchuk. "On presentations of Brauer-type monoids." Open Mathematics 4.3 (2006): 413-434. <http://eudml.org/doc/269652>.
@article{GannaKudryavtseva2006,
abstract = {We obtain presentations for the Brauer monoid, the partial analogue of the Brauer monoid, and for the greatest factorizable inverse submonoid of the dual symmetric inverse monoid. In all three cases we apply the same approach, based on the realization of all these monoids as Brauer-type monoids.},
author = {Ganna Kudryavtseva, Volodymyr Mazorchuk},
journal = {Open Mathematics},
keywords = {20M05; 20M20},
language = {eng},
number = {3},
pages = {413-434},
title = {On presentations of Brauer-type monoids},
url = {http://eudml.org/doc/269652},
volume = {4},
year = {2006},
}
TY - JOUR
AU - Ganna Kudryavtseva
AU - Volodymyr Mazorchuk
TI - On presentations of Brauer-type monoids
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 413
EP - 434
AB - We obtain presentations for the Brauer monoid, the partial analogue of the Brauer monoid, and for the greatest factorizable inverse submonoid of the dual symmetric inverse monoid. In all three cases we apply the same approach, based on the realization of all these monoids as Brauer-type monoids.
LA - eng
KW - 20M05; 20M20
UR - http://eudml.org/doc/269652
ER -
References
top- [1] J. Baez: “Link invariants of finite type and perturbation theory”, Lett. Math. Phys., Vol. 26(1), (1992), pp. 43–51. http://dx.doi.org/10.1007/BF00420517 Zbl0792.57002
- [2] H. Barcelo and A. Ram: Combinatorial representation theory. New perspectives in algebraic combinatorics, Berkeley, CA, 1996–97, pp. 23–90.
- [3] J. Birman: “New points of view in knot theory”, Bull. Amer. Math. Soc. (N.S.), Vol. 28(2), (1993), pp. 253–287. Zbl0785.57001
- [4] J. Birman and H. Wenzl: “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., Vol. 313(1), (1989), pp. 249–273. http://dx.doi.org/10.2307/2001074 Zbl0684.57004
- [5] M. Bloss: “The partition algebra as a centralizer algebra of the alternating group”, Comm. Algebra, Vol. 33(7), (2005), pp. 2219–2229. http://dx.doi.org/10.1081/AGB-200063579 Zbl1110.20012
- [6] R. Brauer: “On algebras which are connected with the semisimple continuous groups”, Ann. of Math. (2), Vol. 38(4), (1937), pp. 857–872. http://dx.doi.org/10.2307/1968843 Zbl0017.39105
- [7] D. FitzGerald: “A presentation for the monoid of uniform block permutations”, Bull. Aus. Math. Soc., Vol. 68, (2003), pp. 317–324. Zbl1043.20037
- [8] D. FitzGerald and J. Leech: “Dual symmetric inverse monoids and representation theory”, J. Austral. Math. Soc. Ser. A, Vol. 64(3), (1998), pp. 345–367. http://dx.doi.org/10.1017/S1446788700039227 Zbl0927.20040
- [9] T. Halverson and A. Ram: “Partition algebras”, European J. Comb., Vol. 26, (2005), pp. 869–921. http://dx.doi.org/10.1016/j.ejc.2004.06.005 Zbl1112.20010
- [10] V.F.R. Jones: The Potts model and the symmetric group. Subfactors (Kyuzeso, 1993), World Sci. Publishing, River Edge, NJ, 1994, pp. 259–267. Zbl0938.20505
- [11] S. Kerov: “Realizations of representations of the Brauer semigroup”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Vol. 164, (1987); Differentsialnaya Geom. Gruppy Li i Mekh., Vol. IX, pp. 188–193, 199; translation in J. Soviet Math., Vol. 47(2), (1989), pp. 2503–2507.
- [12] S. Lipscomb: Symmetric inverse semigroups. Mathematical Surveys and Monographs, Vol. 46, American Mathematical Society, Providence, RI, 1996. Zbl0857.20047
- [13] V. Maltcev: “Systems of generators, ideals and the principal series of the Brauer semigroup”, Proceedings of Kyiv University, Physical and Mathematical Sciences, Vol. 2, (2004), pp. 59–65. Zbl1069.14023
- [14] V. Maltcev: “On one inverse subsemigroups of the semigroup ℭn”, to appear in Proceedings of Kyiv University.
- [15] V. Maltcev: On inverse partition semigroups IP x, preprint, Kyiv University, Kyiv, Ukraine, 2005.
- [16] P. Martin: “Temperley-Lieb algebras for nonplanar statistical mechanics - the partition algebra construction”, J. Knot Theory Ramifications, Vol. 3(1), (1994), pp. 51–82. http://dx.doi.org/10.1142/S0218216594000071 Zbl0804.16002
- [17] P. Martin: “The structure of the partition algebras”, J. Algebra, Vol. 183(2), (1996), pp. 319–358. http://dx.doi.org/10.1006/jabr.1996.0223
- [18] P. Martin and A. Elgamal: “Ramified partition algebras”, Math. Z., Vol. 246(3), (2004), pp. 473–500. http://dx.doi.org/10.1007/s00209-003-0581-4 Zbl1091.16010
- [19] P. Martin and D. Woodcock: “On central idempotents in the partition algebra”, J. Algebra, Vol. 217(1), (1999), pp. 156–169. http://dx.doi.org/10.1006/jabr.1998.7754
- [20] V. Mazorchuk: “On the structure of Brauer semigroup and its partial analogue”, Problems in Algebra, Vol. 13, (1998), pp. 29–45.
- [21] V. Mazorchuk: “Endomorphisms of B n, PB n, and ℭn”, Comm. Algebra, Vol. 30(7), (2002), pp. 3489–3513. http://dx.doi.org/10.1081/AGB-120004500 Zbl1008.20056
- [22] M. Parvathi: “Signed partition algebras”, Comm. Algebra, Vol. 32(5), (2004), pp. 1865–1880. http://dx.doi.org/10.1081/AGB-120029909 Zbl1081.20008
- [23] A. Vernitski: “A generalization of symmetric inverse semigroups”, preprint 2005.
- [24] Ch. Xi: “Partition algebras are cellular”, Compositio Math., Vol. 119(1), (1999), pp. 99–109. http://dx.doi.org/10.1023/A:1001776125173
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.