On presentations of Brauer-type monoids

Ganna Kudryavtseva; Volodymyr Mazorchuk

Open Mathematics (2006)

  • Volume: 4, Issue: 3, page 413-434
  • ISSN: 2391-5455

Abstract

top
We obtain presentations for the Brauer monoid, the partial analogue of the Brauer monoid, and for the greatest factorizable inverse submonoid of the dual symmetric inverse monoid. In all three cases we apply the same approach, based on the realization of all these monoids as Brauer-type monoids.

How to cite

top

Ganna Kudryavtseva, and Volodymyr Mazorchuk. "On presentations of Brauer-type monoids." Open Mathematics 4.3 (2006): 413-434. <http://eudml.org/doc/269652>.

@article{GannaKudryavtseva2006,
abstract = {We obtain presentations for the Brauer monoid, the partial analogue of the Brauer monoid, and for the greatest factorizable inverse submonoid of the dual symmetric inverse monoid. In all three cases we apply the same approach, based on the realization of all these monoids as Brauer-type monoids.},
author = {Ganna Kudryavtseva, Volodymyr Mazorchuk},
journal = {Open Mathematics},
keywords = {20M05; 20M20},
language = {eng},
number = {3},
pages = {413-434},
title = {On presentations of Brauer-type monoids},
url = {http://eudml.org/doc/269652},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Ganna Kudryavtseva
AU - Volodymyr Mazorchuk
TI - On presentations of Brauer-type monoids
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 413
EP - 434
AB - We obtain presentations for the Brauer monoid, the partial analogue of the Brauer monoid, and for the greatest factorizable inverse submonoid of the dual symmetric inverse monoid. In all three cases we apply the same approach, based on the realization of all these monoids as Brauer-type monoids.
LA - eng
KW - 20M05; 20M20
UR - http://eudml.org/doc/269652
ER -

References

top
  1. [1] J. Baez: “Link invariants of finite type and perturbation theory”, Lett. Math. Phys., Vol. 26(1), (1992), pp. 43–51. http://dx.doi.org/10.1007/BF00420517 Zbl0792.57002
  2. [2] H. Barcelo and A. Ram: Combinatorial representation theory. New perspectives in algebraic combinatorics, Berkeley, CA, 1996–97, pp. 23–90. 
  3. [3] J. Birman: “New points of view in knot theory”, Bull. Amer. Math. Soc. (N.S.), Vol. 28(2), (1993), pp. 253–287. Zbl0785.57001
  4. [4] J. Birman and H. Wenzl: “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., Vol. 313(1), (1989), pp. 249–273. http://dx.doi.org/10.2307/2001074 Zbl0684.57004
  5. [5] M. Bloss: “The partition algebra as a centralizer algebra of the alternating group”, Comm. Algebra, Vol. 33(7), (2005), pp. 2219–2229. http://dx.doi.org/10.1081/AGB-200063579 Zbl1110.20012
  6. [6] R. Brauer: “On algebras which are connected with the semisimple continuous groups”, Ann. of Math. (2), Vol. 38(4), (1937), pp. 857–872. http://dx.doi.org/10.2307/1968843 Zbl0017.39105
  7. [7] D. FitzGerald: “A presentation for the monoid of uniform block permutations”, Bull. Aus. Math. Soc., Vol. 68, (2003), pp. 317–324. Zbl1043.20037
  8. [8] D. FitzGerald and J. Leech: “Dual symmetric inverse monoids and representation theory”, J. Austral. Math. Soc. Ser. A, Vol. 64(3), (1998), pp. 345–367. http://dx.doi.org/10.1017/S1446788700039227 Zbl0927.20040
  9. [9] T. Halverson and A. Ram: “Partition algebras”, European J. Comb., Vol. 26, (2005), pp. 869–921. http://dx.doi.org/10.1016/j.ejc.2004.06.005 Zbl1112.20010
  10. [10] V.F.R. Jones: The Potts model and the symmetric group. Subfactors (Kyuzeso, 1993), World Sci. Publishing, River Edge, NJ, 1994, pp. 259–267. Zbl0938.20505
  11. [11] S. Kerov: “Realizations of representations of the Brauer semigroup”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Vol. 164, (1987); Differentsialnaya Geom. Gruppy Li i Mekh., Vol. IX, pp. 188–193, 199; translation in J. Soviet Math., Vol. 47(2), (1989), pp. 2503–2507. 
  12. [12] S. Lipscomb: Symmetric inverse semigroups. Mathematical Surveys and Monographs, Vol. 46, American Mathematical Society, Providence, RI, 1996. Zbl0857.20047
  13. [13] V. Maltcev: “Systems of generators, ideals and the principal series of the Brauer semigroup”, Proceedings of Kyiv University, Physical and Mathematical Sciences, Vol. 2, (2004), pp. 59–65. Zbl1069.14023
  14. [14] V. Maltcev: “On one inverse subsemigroups of the semigroup ℭn”, to appear in Proceedings of Kyiv University. 
  15. [15] V. Maltcev: On inverse partition semigroups IP x, preprint, Kyiv University, Kyiv, Ukraine, 2005. 
  16. [16] P. Martin: “Temperley-Lieb algebras for nonplanar statistical mechanics - the partition algebra construction”, J. Knot Theory Ramifications, Vol. 3(1), (1994), pp. 51–82. http://dx.doi.org/10.1142/S0218216594000071 Zbl0804.16002
  17. [17] P. Martin: “The structure of the partition algebras”, J. Algebra, Vol. 183(2), (1996), pp. 319–358. http://dx.doi.org/10.1006/jabr.1996.0223 
  18. [18] P. Martin and A. Elgamal: “Ramified partition algebras”, Math. Z., Vol. 246(3), (2004), pp. 473–500. http://dx.doi.org/10.1007/s00209-003-0581-4 Zbl1091.16010
  19. [19] P. Martin and D. Woodcock: “On central idempotents in the partition algebra”, J. Algebra, Vol. 217(1), (1999), pp. 156–169. http://dx.doi.org/10.1006/jabr.1998.7754 
  20. [20] V. Mazorchuk: “On the structure of Brauer semigroup and its partial analogue”, Problems in Algebra, Vol. 13, (1998), pp. 29–45. 
  21. [21] V. Mazorchuk: “Endomorphisms of B n, PB n, and ℭn”, Comm. Algebra, Vol. 30(7), (2002), pp. 3489–3513. http://dx.doi.org/10.1081/AGB-120004500 Zbl1008.20056
  22. [22] M. Parvathi: “Signed partition algebras”, Comm. Algebra, Vol. 32(5), (2004), pp. 1865–1880. http://dx.doi.org/10.1081/AGB-120029909 Zbl1081.20008
  23. [23] A. Vernitski: “A generalization of symmetric inverse semigroups”, preprint 2005. 
  24. [24] Ch. Xi: “Partition algebras are cellular”, Compositio Math., Vol. 119(1), (1999), pp. 99–109. http://dx.doi.org/10.1023/A:1001776125173 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.