Natural dualities between abelian categories

Flaviu Pop

Open Mathematics (2011)

  • Volume: 9, Issue: 5, page 1088-1099
  • ISSN: 2391-5455

Abstract

top
In this paper we consider a pair of right adjoint contravariant functors between abelian categories and describe a family of dualities induced by them.

How to cite

top

Flaviu Pop. "Natural dualities between abelian categories." Open Mathematics 9.5 (2011): 1088-1099. <http://eudml.org/doc/269656>.

@article{FlaviuPop2011,
abstract = {In this paper we consider a pair of right adjoint contravariant functors between abelian categories and describe a family of dualities induced by them.},
author = {Flaviu Pop},
journal = {Open Mathematics},
keywords = {Contravariant functor; Right adjoint functors; Duality; Dominant resolution; Costar; Generalized tilting module; contravariant functor; right adjoint functors; duality; dominant resolution; costar; generalized tilting module},
language = {eng},
number = {5},
pages = {1088-1099},
title = {Natural dualities between abelian categories},
url = {http://eudml.org/doc/269656},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Flaviu Pop
TI - Natural dualities between abelian categories
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 1088
EP - 1099
AB - In this paper we consider a pair of right adjoint contravariant functors between abelian categories and describe a family of dualities induced by them.
LA - eng
KW - Contravariant functor; Right adjoint functors; Duality; Dominant resolution; Costar; Generalized tilting module; contravariant functor; right adjoint functors; duality; dominant resolution; costar; generalized tilting module
UR - http://eudml.org/doc/269656
ER -

References

top
  1. [1] Azumaya G., A duality theory for injective modules, Amer. J. Math., 1959, 81(1), 249–278 http://dx.doi.org/10.2307/2372855 Zbl0088.03304
  2. [2] Breaz S., Almost-flat modules, Czechoslovak Math. J., 2003, 53(128)(2), 479–489 http://dx.doi.org/10.1023/A:1026255908301 
  3. [3] Breaz S., A Morita type theorem for a sort of quotient categories, Czechoslovak Math. J., 2005, 55(130)(1), 133–144 http://dx.doi.org/10.1007/s10587-005-0009-x 
  4. [4] Breaz S., Finitistic n-self-cotilting modules, Comm. Algebra, 2009, 37(9), 3152–3170 http://dx.doi.org/10.1080/00927870902747639 Zbl1205.16004
  5. [5] Breaz S., Modoi C., On a quotient category, Studia Univ. Babeş-Bolyai Math., 2002, 47(2), 17–28 Zbl1027.16007
  6. [6] Breaz S., Modoi C., Pop F., Natural equivalences and dualities, In: Proceedings of the International Conference on Modules and Representation Theory, Cluj-Napoca, July 7–12, 2008, Presa Universitară Clujeană, Cluj-Napoca, 2009, 25–40 Zbl1194.16008
  7. [7] Breaz S., Pop F., Dualities induced by right adjoint contravariant functors, Studia Univ. Babeş-Bolyai Math., 2010, 55(1), 75–83 Zbl1208.16013
  8. [8] Castaño-Iglesias F., On a natural duality between Grothendieck categories, Comm. Algebra, 2008, 36(6), 2079–2091 http://dx.doi.org/10.1080/00927870801949534 Zbl1153.16005
  9. [9] Colby R.R., Fuller K.R., Costar modules, J. Algebra, 2001, 242(1), 146–159 http://dx.doi.org/10.1006/jabr.2001.8784 
  10. [10] Colby R.R., Fuller K.R., Equivalence and Duality for Module Categories, Cambridge Tracts in Math., 161, Cambridge University Press, Cambridge, 2004 http://dx.doi.org/10.1017/CBO9780511546518 Zbl1069.16001
  11. [11] Colpi R., Fuller K.R., Cotilting modules and bimodules, Pacific J. Math., 2000, 192(2), 275–291 http://dx.doi.org/10.2140/pjm.2000.192.275 Zbl1014.16008
  12. [12] Fuller K.R., Natural and doubly natural dualities, Comm. Algebra, 2006, 34(2), 749–762 http://dx.doi.org/10.1080/00927870500388059 Zbl1099.16001
  13. [13] Gabriel P., Des catégories abéliennes, Bull. Soc. Math. France, 1962, 90, 323–448 Zbl0201.35602
  14. [14] Mantese F., Tonolo A., Natural dualities, Algebr. Represent. Theory, 2004, 7, 43–52 http://dx.doi.org/10.1023/B:ALGE.0000019385.66745.59 Zbl1069.16011
  15. [15] Morita K., Duality for modules and its applications to the theory of rings with minimum conditions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 1958, 6, 83–142 Zbl0080.25702
  16. [16] Năstăsescu C., Torrecillas B., Morita duality for Grothendieck categories with applications to coalgebras, Comm. Algebra, 2005, 33(11), 4083–4096 http://dx.doi.org/10.1080/00927870500261397 Zbl1101.16031
  17. [17] Năstăsescu C., Van Oystaeyen F., Methods of Graded Rings, Lecture Notes in Math., 1836, Springer, Berlin, 2004 Zbl1043.16017
  18. [18] Tonolo A., On a finitistic cotilting type duality, Comm. Algebra, 2002, 30(10), 5091–5106 http://dx.doi.org/10.1081/AGB-120014686 Zbl1017.16003
  19. [19] Wakamatsu T., Tilting modules and Auslander’s Gorenstein property, J. Algebra, 2004, 275(1), 3–39 http://dx.doi.org/10.1016/j.jalgebra.2003.12.008 Zbl1076.16006
  20. [20] Wisbauer R., Cotilting objects and dualities, In: Representations of Algebras, São Paulo, 1999, Lecture Notes in Pure and Appl. Math., 224, Marcel Dekker, New York, 2002, 215–233 
  21. [21] Wisbauer R., Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach, Philadelphia, 1991 Zbl0746.16001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.