Solvability of a mathematical model of dissociative adsorption and associative desorption type
Algirdas Ambrazevičius; Alicija Eismontaitė
Open Mathematics (2013)
- Volume: 11, Issue: 6, page 1129-1139
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Ambrazevičius A., Solvability of a coupled system of parabolic and ordinary differential equations, Cent. Eur. J. Math., 2010, 8(3), 537–547 http://dx.doi.org/10.2478/s11533-010-0028-1[Crossref] Zbl1201.35107
- [2] Ambrazevičius A., Existence and uniqueness theorem to a unimolecular heterogeneous catalytic reaction model, Nonlinear Anal. Model. Control, 2010, 15(4), 405–421 Zbl06599352
- [3] Friedman A., Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964 Zbl0144.34903
- [4] Kankare J., Vinokurov I.A., Kinetics of Langmuirian adsorption onto planar, spherical, and cylindrical surfaces, Langmuir, 1999, 15(17), 5591–5599 http://dx.doi.org/10.1021/la981642r[Crossref]
- [5] Ladyženskaja O.A., Solonnikov V.A., Ural’ceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., 23, American Mathematical Society, Providence, 1968
- [6] Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 1918, 40(9), 1361–1403 http://dx.doi.org/10.1021/ja02242a004[Crossref]
- [7] Lieberman M.A., The Langmuir isotherm and the standard model of ion-assisted etching, Plasma Sources Science and Technology, 2009, 18(1), #014002 http://dx.doi.org/10.1088/0963-0252/18/1/014002[Crossref]
- [8] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992
- [9] Skakauskas V., Katauskis P., Numerical solving of coupled systems of parabolic and ordinary differential equations, Nonlinear Anal. Model. Control, 2010, 15(3), 351–360 Zbl1227.35024
- [10] Skakauskas V., Katauskis P., Numerical study of the kinetics of unimolecular heterogeneous reactions onto planar surfaces, J. Math. Chem., 2012, 50(1), 141–154 http://dx.doi.org/10.1007/s10910-011-9901-9[Crossref][WoS] Zbl1238.92079