Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
Open Mathematics (2013)
- Volume: 11, Issue: 5, page 931-939
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topIstván Mező. "Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions." Open Mathematics 11.5 (2013): 931-939. <http://eudml.org/doc/269660>.
@article{IstvánMező2013,
abstract = {There is a circle of problems concerning the exponential generating function of harmonic numbers. The main results come from Cvijovic, Dattoli, Gosper and Srivastava. In this paper, we extend some of them. Namely, we give the exponential generating function of hyperharmonic numbers indexed by arithmetic progressions; in the sum several combinatorial numbers (like Stirling and Bell numbers) and the hypergeometric function appear.},
author = {István Mező},
journal = {Open Mathematics},
keywords = {Harmonic numbers; Hyperharmonic numbers; Hypergeometric function; Stirling numbers; r-Stirling numbers; Bell numbers; Dobinski formula; Exponential integral; Digamma function; exponential generating function; harmonic numbers; hyperharmonic numbers; hypergeometric function; -Stirling numbers; exponential integral; digamma function},
language = {eng},
number = {5},
pages = {931-939},
title = {Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions},
url = {http://eudml.org/doc/269660},
volume = {11},
year = {2013},
}
TY - JOUR
AU - István Mező
TI - Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
JO - Open Mathematics
PY - 2013
VL - 11
IS - 5
SP - 931
EP - 939
AB - There is a circle of problems concerning the exponential generating function of harmonic numbers. The main results come from Cvijovic, Dattoli, Gosper and Srivastava. In this paper, we extend some of them. Namely, we give the exponential generating function of hyperharmonic numbers indexed by arithmetic progressions; in the sum several combinatorial numbers (like Stirling and Bell numbers) and the hypergeometric function appear.
LA - eng
KW - Harmonic numbers; Hyperharmonic numbers; Hypergeometric function; Stirling numbers; r-Stirling numbers; Bell numbers; Dobinski formula; Exponential integral; Digamma function; exponential generating function; harmonic numbers; hyperharmonic numbers; hypergeometric function; -Stirling numbers; exponential integral; digamma function
UR - http://eudml.org/doc/269660
ER -
References
top- [1] Aigner M., Combinatorial Theory, Classics Math., Springer, Berlin, 1997 http://dx.doi.org/10.1007/978-3-642-59101-3
- [2] Andrews G.E., Askey R., Roy R., Special Functions, Encyclopedia Math. Appl., 71, Cambridge University Press, Cambridge, 2001
- [3] Benjamin A.T., Gaebler D., Gaebler R., A combinatorial approach to hyperharmonic numbers, Integers, 2003, 3, #A15
- [4] Borwein D., Borwein J.M., Girgensohn R., Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc., 1995, 38(2), 277–294 http://dx.doi.org/10.1017/S0013091500019088 Zbl0819.40003
- [5] Boyadzhiev K.N., Exponential polynomials, Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals, Abstr. Appl. Anal., 2009, #168672 Zbl1237.11011
- [6] Broder A.Z., The r-Stirling numbers, Discrete Math., 1984, 49(3), 241–259 http://dx.doi.org/10.1016/0012-365X(84)90161-4
- [7] Charalambides Ch.A., Combinatorial Methods in Discrete Distributions, Wiley Ser. Probab. Stat., Wiley-Interscience, Hoboken, 2005 http://dx.doi.org/10.1002/0471733180 Zbl1087.60001
- [8] Cheon G.-S., Jung J.-H., r-Whitney numbers of Dowling lattices, Discrete Math., 2012, 312(15), 2337–2348 http://dx.doi.org/10.1016/j.disc.2012.04.001 Zbl1246.05009
- [9] Chowla S., Nathanson M.B., Mellin’s formula and some combinatorial identities, Monatsh. Math., 1976, 81(4), 261–265 http://dx.doi.org/10.1007/BF01387753 Zbl0343.05011
- [10] Comtet L., Advanced Combinatorics, Reidel, Dordrecht, 2010
- [11] Conway J.H., Guy R.K., The Book of Numbers, Copernicus, New York, 1996 http://dx.doi.org/10.1007/978-1-4612-4072-3
- [12] Corcino R.B., The (r; β)-Stirling numbers, Mindanao Forum, 1999, 14(2), 91–100
- [13] Corcino R.B., Corcino C.B., Aldema R., Asymptotic normality of the (r; β)-Stirling numbers, Ars. Combin., 2006, 81, 81–96 Zbl1189.11013
- [14] Corcino R.B., Montero M.B., Corcino C.B., On generalized Bell numbers for complex argument, Util. Math., 2012, 88, 267–279 Zbl1320.11017
- [15] Crandall R.E., Buhler J.P., On the evaluation of Euler sums, Experiment. Math., 1994, 3(4), 275–285 http://dx.doi.org/10.1080/10586458.1994.10504297 Zbl0833.11045
- [16] Cvijovic D., The Dattoli-Srivastava conjectures concerning generating functions involving the harmonic numbers, Appl. Math. Comput., 2010, 215(11), 4040–4043 http://dx.doi.org/10.1016/j.amc.2009.12.011 Zbl1185.33019
- [17] Dattoli G., Srivastava H.M., A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett., 2008, 21(7), 686–693 http://dx.doi.org/10.1016/j.aml.2007.07.021 Zbl1152.05306
- [18] Dobinski G., Summirung der Reihe Σn m/n! für m = 1,2, 3,…, Archiv der Mathematik und Physik, 1877, 61, 333–336 Zbl09.0178.04
- [19] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, 1, Robert E. Krieger, Melbourne, 1981 Zbl0064.06302
- [20] Flajolet P., Salvy B., Euler sums and contour integral representations, Experiment. Math., 1998, 7(1), 15–35 http://dx.doi.org/10.1080/10586458.1998.10504356 Zbl0920.11061
- [21] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series, and Products, 7th ed., Academic Press, Amsterdam, 2007 Zbl1208.65001
- [22] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley, Reading, 1994 Zbl0836.00001
- [23] Hansen E.R., A Table of Series and Products, Prentice-Hall, Englewood Cliffs, 1975 Zbl0438.00001
- [24] Mező I., Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., 2009, 4, #1 Zbl1190.33021
- [25] Mező I., A new formula for the Bernoulli polynomials, Results Math., 2010, 58(3–4), 329–335 http://dx.doi.org/10.1007/s00025-010-0039-z Zbl1237.11010
- [26] Mező I., Dil A., Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., 2009, 7(2), 310–321 http://dx.doi.org/10.2478/s11533-009-0008-5 Zbl1229.11043
- [27] Mező I., Dil A., Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 2010, 130(2), 360–369 http://dx.doi.org/10.1016/j.jnt.2009.08.005 Zbl1225.11032
- [28] Pitman J., Some probabilistic aspects of set partitions, Amer. Math. Monthly, 1997, 104(3), 201–209 http://dx.doi.org/10.2307/2974785 Zbl0876.05005
- [29] Rucinski A., Voigt B., A local limit theorem for generalized Stirling numbers, Rev. Roumaine Math. Pures Appl., 1990, 35(2), 161–172 Zbl0727.60024
- [30] Sofo A., Srivastava H.M., Identities for the harmonic numbers and binomial coefficients, Ramanujan J., 2011, 25(1), 93–113 http://dx.doi.org/10.1007/s11139-010-9228-3 Zbl1234.11022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.