Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the q-integers

Nazim Mahmudov

Open Mathematics (2010)

  • Volume: 8, Issue: 4, page 816-826
  • ISSN: 2391-5455

Abstract

top
In the present paper we introduce and investigate weighted statistical approximation properties of a q-analogue of the Baskakov and Baskakov-Kantorovich operators. By using a weighted modulus of smoothness, we give some direct estimations for error in the case 0 < q < 1.

How to cite

top

Nazim Mahmudov. "Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the q-integers." Open Mathematics 8.4 (2010): 816-826. <http://eudml.org/doc/269661>.

@article{NazimMahmudov2010,
abstract = {In the present paper we introduce and investigate weighted statistical approximation properties of a q-analogue of the Baskakov and Baskakov-Kantorovich operators. By using a weighted modulus of smoothness, we give some direct estimations for error in the case 0 < q < 1.},
author = {Nazim Mahmudov},
journal = {Open Mathematics},
keywords = {q-integers; q-Baskakov operators; q-Baskakov-Kantorovich operators; Weighted space; Weighted modulus of smoothness; -integers; -Baskakov operators; -Baskakov-Kantorovich operators; weighted space; weighted modulus of smoothness},
language = {eng},
number = {4},
pages = {816-826},
title = {Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the q-integers},
url = {http://eudml.org/doc/269661},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Nazim Mahmudov
TI - Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the q-integers
JO - Open Mathematics
PY - 2010
VL - 8
IS - 4
SP - 816
EP - 826
AB - In the present paper we introduce and investigate weighted statistical approximation properties of a q-analogue of the Baskakov and Baskakov-Kantorovich operators. By using a weighted modulus of smoothness, we give some direct estimations for error in the case 0 < q < 1.
LA - eng
KW - q-integers; q-Baskakov operators; q-Baskakov-Kantorovich operators; Weighted space; Weighted modulus of smoothness; -integers; -Baskakov operators; -Baskakov-Kantorovich operators; weighted space; weighted modulus of smoothness
UR - http://eudml.org/doc/269661
ER -

References

top
  1. [1] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 2009, 13(4), 735–743 http://dx.doi.org/10.1007/s11117-008-3002-4[WoS][Crossref] Zbl1179.41023
  2. [2] Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994 Zbl0924.41001
  3. [3] Andrews G.E., Askey R., Roy R., Special Functions, Cambridge University Press, Cambridge, 1999 
  4. [4] Aral A., Gupta V., On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Anal., 2010, 72(3–4), 1171–1180 Zbl1180.41012
  5. [5] Baskakov V.A., An instance of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 1957, 113, 249–251 (in Russian) Zbl0080.05201
  6. [6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo, 2005, 76, 269–290 
  7. [7] Doğgru O., Duman O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen, 2006, 68(1–2), 199–214 
  8. [8] Doğgru O., Duman O., Orhan C., Statistical approximation by generalized Meyer-König and Zeller type operators, Studia Sci. Math. Hungar., 2003, 40(3), 359–371 
  9. [9] Doğgru O., Gupta V., Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, Georgian Math. J., 2005, 12(3), 415–422 
  10. [10] Doğgru O., Gupta V., Korovkin-type approximation properties of bivariate q-Meyer-Konig and Zeller operators, Calcolo, 2006, 43(1), 51–63 http://dx.doi.org/10.1007/s10092-006-0114-8[Crossref] Zbl1121.41020
  11. [11] Duman O., Orhan C., Statistical approximation by positive linear operators, Studia Math., 2004, 161(2), 187–197 http://dx.doi.org/10.4064/sm161-2-6[Crossref] Zbl1049.41016
  12. [12] Gadjiev A.D., Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 2002, 32(1), 129–138 http://dx.doi.org/10.1216/rmjm/1030539612[Crossref] Zbl1039.41018
  13. [13] Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 2008, 197(1), 172–178 http://dx.doi.org/10.1016/j.amc.2007.07.056[Crossref][WoS] 
  14. [14] Gupta V., Radu C., Statistical approximation properties of q-Baskakov.Kantorovich operators, Cent. Eur. J. Math., 2009, 7(4), 809–818 http://dx.doi.org/10.2478/s11533-009-0055-y[WoS][Crossref] Zbl1183.41015
  15. [15] Kac V., Cheung P., Quantum Calculus, Universitext, Springer, New York, 2002 
  16. [16] López-Moreno A.-J., Weighted silmultaneous approximation with Baskakov type operators, Acta Math. Hungar., 2004, 104(1–2), 143–151 http://dx.doi.org/10.1023/B:AMHU.0000034368.81211.23[Crossref] 
  17. [17] Lupaş A., A q-Analogue of the Bernstein operator, In: Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, 1987, 85–92 Zbl0696.41023
  18. [18] Mahmudov N.I., Korovkin-type theorems and applications, Cent. Eur. J. Math., 2009, 7(2), 348–356 http://dx.doi.org/10.2478/s11533-009-0006-7[Crossref][WoS] Zbl1179.41024
  19. [19] Mahmudov N.I., On q-parametric Szász-Mirakjan operators, Mediterranean J. Math., (in press), DOI:10.1007/s00009-010-0037-0 [Crossref] Zbl1206.41015
  20. [20] Mahmudov N.I., Sabancıgil P., q-Parametric Bleimann Butzer and Hahn operators, J. Inequal. Appl., 2008, art. ID 816367, 15 pp. [WoS] 
  21. [21] Mahmudov N.I., Sabancıgil P., On genuine q-Bernstein.Durrmeyer operators, Publ. Math. Debrecen, 2010, 76(1–2), (in press) Zbl1274.41033
  22. [22] Özarslan M.A., q-Szász Schurer operators, (in press) 
  23. [23] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4(1–4), 511–518 Zbl0881.41008
  24. [24] Radu C., On statistical approximation of a general class of positive linear operators extended in q-calculus, Appl. Math. Comput., 2009, 215(6), 2317–2325 http://dx.doi.org/10.1016/j.amc.2009.08.023[Crossref][WoS] Zbl1179.41025
  25. [25] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numer. Theor. Approx., 2000, 29(2), 221–229 Zbl1023.41022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.