Polynomial translation surfaces of Weingarten types in Euclidean 3-space
Open Mathematics (2010)
- Volume: 8, Issue: 3, page 430-436
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDae Yoon. "Polynomial translation surfaces of Weingarten types in Euclidean 3-space." Open Mathematics 8.3 (2010): 430-436. <http://eudml.org/doc/269663>.
@article{DaeYoon2010,
abstract = {In this paper, we classify polynomial translation surfaces in Euclidean 3-space satisfying the Jacobi condition with respect to the Gaussian curvature, the mean curvature and the second Gaussian curvature.},
author = {Dae Yoon},
journal = {Open Mathematics},
keywords = {Translation surface; Jacobi equation; Gaussian curvature; Mean curvature; Second Gaussian curvature; translation surface; mean curvature; second Gaussian curvature},
language = {eng},
number = {3},
pages = {430-436},
title = {Polynomial translation surfaces of Weingarten types in Euclidean 3-space},
url = {http://eudml.org/doc/269663},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Dae Yoon
TI - Polynomial translation surfaces of Weingarten types in Euclidean 3-space
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 430
EP - 436
AB - In this paper, we classify polynomial translation surfaces in Euclidean 3-space satisfying the Jacobi condition with respect to the Gaussian curvature, the mean curvature and the second Gaussian curvature.
LA - eng
KW - Translation surface; Jacobi equation; Gaussian curvature; Mean curvature; Second Gaussian curvature; translation surface; mean curvature; second Gaussian curvature
UR - http://eudml.org/doc/269663
ER -
References
top- [1] Baikoussis C., Koufogiorgos Th., On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math., 1997, 68, 169–176 http://dx.doi.org/10.1007/s000130050046 Zbl0870.53004
- [2] Blair D.E., Koufogiorgos Th., Ruled surfaces with vanishing second Gaussian curvature, Monatsh. Math., 1992, 113, 177–181 http://dx.doi.org/10.1007/BF01641765 Zbl0765.53003
- [3] Dillen F., Goemans W., Van de Woestyne I., Translation surfaces of Weingarten type in 3-space, Bull. Transilvania Univ. Brasov (Ser. III), 2008, 50, 109–122
- [4] Dillen F., Kühnel W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 1999, 98, 307–320 http://dx.doi.org/10.1007/s002290050142 Zbl0942.53004
- [5] Dillen F., Sodsiri W., Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom., 2005, 83, 10–21 http://dx.doi.org/10.1007/s00022-005-0002-4 Zbl1094.53005
- [6] Goemans W., Van de Woestyne I., Translation surfaces with the second fundamental form with vanishing Gaussian curvature in Euclidean and Minkowski 3-space, Proceeding PADGE, 2007
- [7] Kim Y.H., Yoon D.W., Classification of ruled surfaces in Minkowski 3-spaces, J. Geom. Phys., 2004, 49, 89–100 http://dx.doi.org/10.1016/S0393-0440(03)00084-6 Zbl1078.53006
- [8] Koufogiorgos Th., Hasanis T., A characteristic property of the sphere, Proc. Amer. Math. Soc., 1977, 67, 303–305 http://dx.doi.org/10.2307/2041291
- [9] Koutroufiotis D., Two characteristic properties of the sphere, Proc. Amer. Math. Soc., 1974, 44, 176–178 http://dx.doi.org/10.2307/2039251 Zbl0283.53002
- [10] Kühnel W., Ruled W-surfaces, Arch. Math., 1994, 62, 475–480 http://dx.doi.org/10.1007/BF01196440 Zbl0794.53008
- [11] López R., Special Weingarten surfaces foliated by circles, Monatsh. Math., 2008, 154(4), 289–302 http://dx.doi.org/10.1007/s00605-008-0557-x Zbl1169.53005
- [12] Munteanu M.I., Nistor A.I., Polynomial translation Weingarten surfaces in 3-dimensional Euclidean space, In: Differential Geometry, Proceedings of the VIII International Colloquium, Santiago de Compostela, Spain, World Scientific, Hackensack, 2009, 316–320 http://dx.doi.org/10.1142/9789814261173_0034 Zbl1179.53005
- [13] Munteanu M.I., Nistor A.I., On the geometry of the second fundamental form of translation surface in , Houston J. Math., 2010, (in print), preprint available at http://arxiv.org/abs/0812.3166
- [14] Yoon D.W., Some properties of the helicoid as ruled surfaces, JP Jour. Geom. Topology, 2002, 2, 141–147 Zbl1038.53005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.