A note on the differentiable structure of generalized idempotents

Esteban Andruchow; Gustavo Corach; Mostafa Mbekhta

Open Mathematics (2013)

  • Volume: 11, Issue: 6, page 1004-1019
  • ISSN: 2391-5455

Abstract

top
For a fixed n > 2, we study the set Λ of generalized idempotents, which are operators satisfying T n+1 = T. Also the subsets Λ†, of operators such that T n−1 is the Moore-Penrose pseudo-inverse of T, and Λ*, of operators such that T n−1 = T* (known as generalized projections) are studied. The local smooth structure of these sets is examined.

How to cite

top

Esteban Andruchow, Gustavo Corach, and Mostafa Mbekhta. "A note on the differentiable structure of generalized idempotents." Open Mathematics 11.6 (2013): 1004-1019. <http://eudml.org/doc/269665>.

@article{EstebanAndruchow2013,
abstract = {For a fixed n > 2, we study the set Λ of generalized idempotents, which are operators satisfying T n+1 = T. Also the subsets Λ†, of operators such that T n−1 is the Moore-Penrose pseudo-inverse of T, and Λ*, of operators such that T n−1 = T* (known as generalized projections) are studied. The local smooth structure of these sets is examined.},
author = {Esteban Andruchow, Gustavo Corach, Mostafa Mbekhta},
journal = {Open Mathematics},
keywords = {Generalized idempotents; Generalized projections; generalized idempotents; generalized projections},
language = {eng},
number = {6},
pages = {1004-1019},
title = {A note on the differentiable structure of generalized idempotents},
url = {http://eudml.org/doc/269665},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Esteban Andruchow
AU - Gustavo Corach
AU - Mostafa Mbekhta
TI - A note on the differentiable structure of generalized idempotents
JO - Open Mathematics
PY - 2013
VL - 11
IS - 6
SP - 1004
EP - 1019
AB - For a fixed n > 2, we study the set Λ of generalized idempotents, which are operators satisfying T n+1 = T. Also the subsets Λ†, of operators such that T n−1 is the Moore-Penrose pseudo-inverse of T, and Λ*, of operators such that T n−1 = T* (known as generalized projections) are studied. The local smooth structure of these sets is examined.
LA - eng
KW - Generalized idempotents; Generalized projections; generalized idempotents; generalized projections
UR - http://eudml.org/doc/269665
ER -

References

top
  1. [1] Andruchow E., Corach G., Stojanoff D., Projective spaces of a C*-algebra, Integral Equations Operator Theory, 2000, 37(2), 143–168 http://dx.doi.org/10.1007/BF01192421[Crossref] Zbl0962.46040
  2. [2] Andruchow E., Stojanoff D., Nilpotent operators and systems of projections, J. Operator Theory, 1988, 20(2), 359–374 Zbl0693.47015
  3. [3] Andruchow E., Stojanoff D., Differentiable structure of similarity orbits, J. Operator Theory, 1989, 21(2), 349–366 Zbl0697.47014
  4. [4] Baksalary J.K., Baksalary O.M., Liu X., Further properties of generalized and hypergeneralized projectors, Linear Algebra Appl., 2004, 389, 295–303 http://dx.doi.org/10.1016/j.laa.2004.03.013[WoS][Crossref] Zbl1068.15036
  5. [5] Baksalary J.K., Baksalary O.M., Liu X., Trenkler G., Further results on generalized and hypergeneralized projectors, Linear Algebra Appl., 2008, 429(5–6), 1038–1050 http://dx.doi.org/10.1016/j.laa.2007.03.029[Crossref][WoS] Zbl1151.15022
  6. [6] Baksalary J.K., Liu X., An alternative characterization of generalized projectors, Linear Algebra Appl., 2004, 388, 61–65 http://dx.doi.org/10.1016/j.laa.2004.01.010[Crossref] 
  7. [7] Beltiţă D., Smooth Homogeneous Structures in Operator Theory, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 137, Chapman & Hall/CRC, Boca Raton, 2006 Zbl1105.47001
  8. [8] Benítez J., Thome N., Characterizations and linear combinations of k-generalized projectors, Linear Algebra Appl., 2005, 410, 150–159 http://dx.doi.org/10.1016/j.laa.2005.03.007[Crossref] Zbl1086.15502
  9. [9] Corach G., Porta H., Recht L., Differential geometry of systems of projections in Banach algebras, Pacific J. Math., 1990, 143(2), 209–228 http://dx.doi.org/10.2140/pjm.1990.143.209[Crossref] Zbl0734.46031
  10. [10] Corach G., Porta H., Recht L., The geometry of spaces of projections in C*-algebras, Adv. Math., 1993, 101(1), 59–77 http://dx.doi.org/10.1006/aima.1993.1041[Crossref] Zbl0799.46067
  11. [11] Davis C., Kahan W.M., Weinberger H.F., Norm preserving dilations and their applications to optimal error bounds, SIAM J. Numer. Anal., 1982, 19(3), 445–469 http://dx.doi.org/10.1137/0719029[Crossref] Zbl0491.47003
  12. [12] Du H.-K., Li Y., The spectral characterization of generalized projections, Linear Algebra Appl., 2005, 400, 313–318 http://dx.doi.org/10.1016/j.laa.2004.11.027[Crossref] Zbl1067.47001
  13. [13] Du H.-K., Wang W.-F., Duan Y.-T., Path connectivity of k-generalized projectors, Linear Algebra Appl., 2007, 422(2–3), 712–720 http://dx.doi.org/10.1016/j.laa.2006.12.001[Crossref][WoS] Zbl1115.47001
  14. [14] Groß J., Trenkler G., Generalized and hypergeneralized projectors, Linear Algebra Appl., 1997, 264, 463–474 http://dx.doi.org/10.1016/S0024-3795(96)00541-1[Crossref] Zbl0887.15024
  15. [15] Herrero D.A., Approximation of Hilbert Space Operators, I, 2nd ed., Pitman Res. Notes Math. Ser., 224, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1989 
  16. [16] Kovarik Z.V., Manifolds of frames of projectors, Linear Algebra Appl., 1980, 31, 151–158 http://dx.doi.org/10.1016/0024-3795(80)90215-3[Crossref] 
  17. [17] Kovarik Z.V., Sherif N., Characterization of similarities between two n-frames of projectors, Linear Algebra Appl., 1984, 57, 57–69 http://dx.doi.org/10.1016/0024-3795(84)90176-9[Crossref] Zbl0536.47001
  18. [18] Kovarik Z.V., Sherif N., Geodesics and near-geodesics in the manifolds of projector frames, Linear Algebra Appl., 1988, 99, 259–277 http://dx.doi.org/10.1016/0024-3795(88)90136-X[Crossref] Zbl0642.58008
  19. [19] Lebtahi L., Thome N., A note on k-generalized projections, Linear Algebra Appl., 2007, 420(2–3), 572–575 http://dx.doi.org/10.1016/j.laa.2006.08.011[Crossref] Zbl1108.47001
  20. [20] Porta H., Recht L., Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc., 1987, 100(3), 464–466 http://dx.doi.org/10.1090/S0002-9939-1987-0891146-6[Crossref] Zbl0656.46042
  21. [21] Stewart G.W., A note on generalized and hypergeneralized projectors, Linear Algebra Appl., 2006, 412(2–3), 408–411 http://dx.doi.org/10.1016/j.laa.2005.07.022[Crossref] Zbl1088.15027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.