Kernels of representations of Drinfeld doubles of finite groups

Sebastian Burciu

Open Mathematics (2013)

  • Volume: 11, Issue: 11, page 1900-1913
  • ISSN: 2391-5455

Abstract

top
A description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.

How to cite

top

Sebastian Burciu. "Kernels of representations of Drinfeld doubles of finite groups." Open Mathematics 11.11 (2013): 1900-1913. <http://eudml.org/doc/269671>.

@article{SebastianBurciu2013,
abstract = {A description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.},
author = {Sebastian Burciu},
journal = {Open Mathematics},
keywords = {Normal fusion subcategories; Drinfeld doubles of finite groups; Fusion subcategories; Kernels of representations; semisimple Hopf algebras; Drinfeld doubles; kernels of representations; normal Hopf subalgebras; fusion categories},
language = {eng},
number = {11},
pages = {1900-1913},
title = {Kernels of representations of Drinfeld doubles of finite groups},
url = {http://eudml.org/doc/269671},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Sebastian Burciu
TI - Kernels of representations of Drinfeld doubles of finite groups
JO - Open Mathematics
PY - 2013
VL - 11
IS - 11
SP - 1900
EP - 1913
AB - A description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.
LA - eng
KW - Normal fusion subcategories; Drinfeld doubles of finite groups; Fusion subcategories; Kernels of representations; semisimple Hopf algebras; Drinfeld doubles; kernels of representations; normal Hopf subalgebras; fusion categories
UR - http://eudml.org/doc/269671
ER -

References

top
  1. [1] Bruguières A., Natale S., Exact sequences of tensor categories, Int. Math. Res. Not. IMRN, 2011, 24, 5644–5705 Zbl1250.18005
  2. [2] Burciu S., Coset decomposition for semisimple Hopf algebras, Comm. Algebra, 2009, 37(10), 3573–3585 http://dx.doi.org/10.1080/00927870902828496 Zbl1193.16025
  3. [3] Burciu S., Normal Hopf subalgebras of semisimple Hopf Algebras, Proc. Amer. Math. Soc., 2009, 137(12), 3969–3979 http://dx.doi.org/10.1090/S0002-9939-09-09965-1 Zbl1191.16031
  4. [4] Burciu S., Categorical Hopf kernels and representations of semisimple Hopf algebras, J. Algebra, 2011, 337, 253–260 http://dx.doi.org/10.1016/j.jalgebra.2011.04.006 Zbl1243.16034
  5. [5] Burciu S., On coideal subalgebras of cocentral Kac algebras and a generalization of Wall’s conjecture, preprint available at http://arxiv.org/abs/1203.5491 Zbl1327.16016
  6. [6] Etingof P., Nikshych D., Ostrik V., On fusion categories, Ann. of Math., 2005, 162(2), 581–642 http://dx.doi.org/10.4007/annals.2005.162.581 Zbl1125.16025
  7. [7] Gelaki S., Nikshych D., Nilpotent fusion categories, Adv. Math., 2008, 217(3), 1053–1071 http://dx.doi.org/10.1016/j.aim.2007.08.001 Zbl1168.18004
  8. [8] Kadison L., Hopf subalgebras and tensor powers of generalized permutation modules, preprint avaliable at http://arxiv.org/abs/1210.3178 
  9. [9] Larson R.G, Characters of Hopf algebras, J. Algebra, 1971, 17(3), 352–368 http://dx.doi.org/10.1016/0021-8693(71)90018-4 
  10. [10] Larson R.G., Radford D.E., Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra, 1988, 117(2), 267–289 http://dx.doi.org/10.1016/0021-8693(88)90107-X Zbl0649.16005
  11. [11] Masuoka A., Semisimple Hopf algebras of dimension 2p, Comm. Algebra, 1995, 23(5), 1931–1940 http://dx.doi.org/10.1080/00927879508825319 Zbl0824.16028
  12. [12] Montgomery S., Hopf algebras and their actions on rings, In: CBMS Reg. Conf. Ser. Math., 82, American Mathematical Society, Providence, 1993 
  13. [13] Müger M., On the structure of modular categories, Proc. London Math. Soc., 2003, 87(2), 291–308 http://dx.doi.org/10.1112/S0024611503014187 Zbl1037.18005
  14. [14] Naidu D., Nikshych D., Lagrangian subcategories and braided tensor equivalences of twisted quantum doubles of finite groups, Comm. Math. Phys., 2008, 279(3), 845–872 http://dx.doi.org/10.1007/s00220-008-0441-5 Zbl1139.16028
  15. [15] Naidu D., Nikshych D., Witherspoon S., Fusion subcategories of representation categories of twisted quantum doubles of finite groups, Int. Math. Res. Not. IMRN, 2009, 22, 4183–4219 Zbl1206.18006
  16. [16] Nichols W.D., Richmond M.B., The Grothendieck algebra of a Hopf algebra. I, Comm. Algebra, 1988, 26(4), 1081–1095 http://dx.doi.org/10.1080/00927879808826185 Zbl0901.16018
  17. [17] Nichols W.D., Richmond M.B., The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra, 1996, 106(3), 297–306 http://dx.doi.org/10.1016/0022-4049(95)00023-2 Zbl0848.16034
  18. [18] Passman D.S., Quinn D., Burnside’s theorem for Hopf algebras, Proc. Amer. Math. Soc., 1995, 123(2), 327–333 Zbl0832.16034
  19. [19] Sommerhäuser Y., On Kaplansky’s fifth conjecture, J. Algebra, 1998, 204(1), 202–224 http://dx.doi.org/10.1006/jabr.1997.7337 
  20. [20] Zhu Y., Hopf algebras of prime dimension, Int. Math. Res. Not. IMRN, 1994, 1, 53–59 http://dx.doi.org/10.1155/S1073792894000073 Zbl0822.16036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.