Kernels of representations of Drinfeld doubles of finite groups
Open Mathematics (2013)
- Volume: 11, Issue: 11, page 1900-1913
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topSebastian Burciu. "Kernels of representations of Drinfeld doubles of finite groups." Open Mathematics 11.11 (2013): 1900-1913. <http://eudml.org/doc/269671>.
@article{SebastianBurciu2013,
abstract = {A description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.},
author = {Sebastian Burciu},
journal = {Open Mathematics},
keywords = {Normal fusion subcategories; Drinfeld doubles of finite groups; Fusion subcategories; Kernels of representations; semisimple Hopf algebras; Drinfeld doubles; kernels of representations; normal Hopf subalgebras; fusion categories},
language = {eng},
number = {11},
pages = {1900-1913},
title = {Kernels of representations of Drinfeld doubles of finite groups},
url = {http://eudml.org/doc/269671},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Sebastian Burciu
TI - Kernels of representations of Drinfeld doubles of finite groups
JO - Open Mathematics
PY - 2013
VL - 11
IS - 11
SP - 1900
EP - 1913
AB - A description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.
LA - eng
KW - Normal fusion subcategories; Drinfeld doubles of finite groups; Fusion subcategories; Kernels of representations; semisimple Hopf algebras; Drinfeld doubles; kernels of representations; normal Hopf subalgebras; fusion categories
UR - http://eudml.org/doc/269671
ER -
References
top- [1] Bruguières A., Natale S., Exact sequences of tensor categories, Int. Math. Res. Not. IMRN, 2011, 24, 5644–5705 Zbl1250.18005
- [2] Burciu S., Coset decomposition for semisimple Hopf algebras, Comm. Algebra, 2009, 37(10), 3573–3585 http://dx.doi.org/10.1080/00927870902828496 Zbl1193.16025
- [3] Burciu S., Normal Hopf subalgebras of semisimple Hopf Algebras, Proc. Amer. Math. Soc., 2009, 137(12), 3969–3979 http://dx.doi.org/10.1090/S0002-9939-09-09965-1 Zbl1191.16031
- [4] Burciu S., Categorical Hopf kernels and representations of semisimple Hopf algebras, J. Algebra, 2011, 337, 253–260 http://dx.doi.org/10.1016/j.jalgebra.2011.04.006 Zbl1243.16034
- [5] Burciu S., On coideal subalgebras of cocentral Kac algebras and a generalization of Wall’s conjecture, preprint available at http://arxiv.org/abs/1203.5491 Zbl1327.16016
- [6] Etingof P., Nikshych D., Ostrik V., On fusion categories, Ann. of Math., 2005, 162(2), 581–642 http://dx.doi.org/10.4007/annals.2005.162.581 Zbl1125.16025
- [7] Gelaki S., Nikshych D., Nilpotent fusion categories, Adv. Math., 2008, 217(3), 1053–1071 http://dx.doi.org/10.1016/j.aim.2007.08.001 Zbl1168.18004
- [8] Kadison L., Hopf subalgebras and tensor powers of generalized permutation modules, preprint avaliable at http://arxiv.org/abs/1210.3178
- [9] Larson R.G, Characters of Hopf algebras, J. Algebra, 1971, 17(3), 352–368 http://dx.doi.org/10.1016/0021-8693(71)90018-4
- [10] Larson R.G., Radford D.E., Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra, 1988, 117(2), 267–289 http://dx.doi.org/10.1016/0021-8693(88)90107-X Zbl0649.16005
- [11] Masuoka A., Semisimple Hopf algebras of dimension 2p, Comm. Algebra, 1995, 23(5), 1931–1940 http://dx.doi.org/10.1080/00927879508825319 Zbl0824.16028
- [12] Montgomery S., Hopf algebras and their actions on rings, In: CBMS Reg. Conf. Ser. Math., 82, American Mathematical Society, Providence, 1993
- [13] Müger M., On the structure of modular categories, Proc. London Math. Soc., 2003, 87(2), 291–308 http://dx.doi.org/10.1112/S0024611503014187 Zbl1037.18005
- [14] Naidu D., Nikshych D., Lagrangian subcategories and braided tensor equivalences of twisted quantum doubles of finite groups, Comm. Math. Phys., 2008, 279(3), 845–872 http://dx.doi.org/10.1007/s00220-008-0441-5 Zbl1139.16028
- [15] Naidu D., Nikshych D., Witherspoon S., Fusion subcategories of representation categories of twisted quantum doubles of finite groups, Int. Math. Res. Not. IMRN, 2009, 22, 4183–4219 Zbl1206.18006
- [16] Nichols W.D., Richmond M.B., The Grothendieck algebra of a Hopf algebra. I, Comm. Algebra, 1988, 26(4), 1081–1095 http://dx.doi.org/10.1080/00927879808826185 Zbl0901.16018
- [17] Nichols W.D., Richmond M.B., The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra, 1996, 106(3), 297–306 http://dx.doi.org/10.1016/0022-4049(95)00023-2 Zbl0848.16034
- [18] Passman D.S., Quinn D., Burnside’s theorem for Hopf algebras, Proc. Amer. Math. Soc., 1995, 123(2), 327–333 Zbl0832.16034
- [19] Sommerhäuser Y., On Kaplansky’s fifth conjecture, J. Algebra, 1998, 204(1), 202–224 http://dx.doi.org/10.1006/jabr.1997.7337
- [20] Zhu Y., Hopf algebras of prime dimension, Int. Math. Res. Not. IMRN, 1994, 1, 53–59 http://dx.doi.org/10.1155/S1073792894000073 Zbl0822.16036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.