Another approach to characterizations of generalized triangle inequalities in normed spaces

Tamotsu Izumida; Ken-Ichi Mitani; Kichi-Suke Saito

Open Mathematics (2014)

  • Volume: 12, Issue: 11, page 1615-1623
  • ISSN: 2391-5455

Abstract

top
In this paper, we consider a generalized triangle inequality of the following type: x 1 + + x n p x 1 p μ 1 + + x 2 p μ n f o r a l l x 1 , ... , x n X , where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].

How to cite

top

Tamotsu Izumida, Ken-Ichi Mitani, and Kichi-Suke Saito. "Another approach to characterizations of generalized triangle inequalities in normed spaces." Open Mathematics 12.11 (2014): 1615-1623. <http://eudml.org/doc/269693>.

@article{TamotsuIzumida2014,
abstract = {In this paper, we consider a generalized triangle inequality of the following type: \[\left\Vert \{x\_1 + \cdots + x\_n \} \right\Vert ^p \leqslant \frac\{\{\left\Vert \{x\_1 \} \right\Vert ^p \}\}\{\{\mu \_1 \}\} + \cdots + \frac\{\{\left\Vert \{x\_2 \} \right\Vert ^p \}\}\{\{\mu \_n \}\}\left( \{for all x\_1 , \ldots ,x\_n \in X\} \right),\] where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].},
author = {Tamotsu Izumida, Ken-Ichi Mitani, Kichi-Suke Saito},
journal = {Open Mathematics},
keywords = {Generalized triangle inequality; Absolute norm; ψ-direct sum; Generalized Hölder inequality; generalized triangle inequality; absolute norm; -direct sum; generalized Hölder inequality},
language = {eng},
number = {11},
pages = {1615-1623},
title = {Another approach to characterizations of generalized triangle inequalities in normed spaces},
url = {http://eudml.org/doc/269693},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Tamotsu Izumida
AU - Ken-Ichi Mitani
AU - Kichi-Suke Saito
TI - Another approach to characterizations of generalized triangle inequalities in normed spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 11
SP - 1615
EP - 1623
AB - In this paper, we consider a generalized triangle inequality of the following type: \[\left\Vert {x_1 + \cdots + x_n } \right\Vert ^p \leqslant \frac{{\left\Vert {x_1 } \right\Vert ^p }}{{\mu _1 }} + \cdots + \frac{{\left\Vert {x_2 } \right\Vert ^p }}{{\mu _n }}\left( {for all x_1 , \ldots ,x_n \in X} \right),\] where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].
LA - eng
KW - Generalized triangle inequality; Absolute norm; ψ-direct sum; Generalized Hölder inequality; generalized triangle inequality; absolute norm; -direct sum; generalized Hölder inequality
UR - http://eudml.org/doc/269693
ER -

References

top
  1. [1] Ansari A.H., Moslehian M.S., Refinements of reverse triangle inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 2005, 6(3), article 64, 12pp. Zbl1095.46016
  2. [2] Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Characterizations of a generalized triangle inequality in normed spaces, Nonlinear Anal., 2012, 75(2), 735–741 http://dx.doi.org/10.1016/j.na.2011.09.004 Zbl1242.46029
  3. [3] Kato M., Saito K.-S., Tamura T., On ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc., 2003, 75(3), 413–422 http://dx.doi.org/10.1017/S1446788700008193 Zbl1055.46010
  4. [4] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 Zbl1121.46019
  5. [5] Maligranda L., Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2008, 2(2), 31–41 Zbl1147.46020
  6. [6] Mitani K.-I., Oshiro S., Saito K.-S., Smoothness of ψ-direct sums of Banach spaces, Math. Ineq. Appl., 2005, 8(1), 147–157 Zbl1084.46012
  7. [7] Mitani K.-I., Saito K.-S., On sharp triangle inequalities in Banach spaces II, J. Inequal. Appl., 2010, Art. ID 323609, 17pp. 
  8. [8] Mitani K.-I., Saito K.-S., Kato M., Tamura T., On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl., 2007, 336(2), 1178–1186 http://dx.doi.org/10.1016/j.jmaa.2007.03.036 Zbl1127.46015
  9. [9] Nikolova L., Persson L.-E., Varošanec S., The Beckenbach-Dresher inequality in the -direct sums of spaces and related results, J. Inequal. Appl., 2012, 2012:7, 14pp. http://dx.doi.org/10.1186/1029-242X-2012-7 Zbl1275.26042
  10. [10] Saito K.-S., Kato M., Takahashi Y., Von Neumann-Jordan constant of absolute normalized norms on ℂ2, J. Math. Anal. Appl., 2000, 244(2), 515–532 http://dx.doi.org/10.1006/jmaa.2000.6727 
  11. [11] Saito K.-S., Kato M., Takahashi Y., Absolute norms on ℂn, J. Math. Anal. Appl., 2000, 252(2), 879–905 http://dx.doi.org/10.1006/jmaa.2000.7139 
  12. [12] Takahasi S.-E., Rassias J.M., Saitoh S., Takahashi Y., Refined generalizations of the triangle inequality on Banach spaces, Math. Ineq. Appl., 2010, 13(4), 733–741 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.