Another approach to characterizations of generalized triangle inequalities in normed spaces
Tamotsu Izumida; Ken-Ichi Mitani; Kichi-Suke Saito
Open Mathematics (2014)
- Volume: 12, Issue: 11, page 1615-1623
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topTamotsu Izumida, Ken-Ichi Mitani, and Kichi-Suke Saito. "Another approach to characterizations of generalized triangle inequalities in normed spaces." Open Mathematics 12.11 (2014): 1615-1623. <http://eudml.org/doc/269693>.
@article{TamotsuIzumida2014,
abstract = {In this paper, we consider a generalized triangle inequality of the following type: \[\left\Vert \{x\_1 + \cdots + x\_n \} \right\Vert ^p \leqslant \frac\{\{\left\Vert \{x\_1 \} \right\Vert ^p \}\}\{\{\mu \_1 \}\} + \cdots + \frac\{\{\left\Vert \{x\_2 \} \right\Vert ^p \}\}\{\{\mu \_n \}\}\left( \{for all x\_1 , \ldots ,x\_n \in X\} \right),\]
where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].},
author = {Tamotsu Izumida, Ken-Ichi Mitani, Kichi-Suke Saito},
journal = {Open Mathematics},
keywords = {Generalized triangle inequality; Absolute norm; ψ-direct sum; Generalized Hölder inequality; generalized triangle inequality; absolute norm; -direct sum; generalized Hölder inequality},
language = {eng},
number = {11},
pages = {1615-1623},
title = {Another approach to characterizations of generalized triangle inequalities in normed spaces},
url = {http://eudml.org/doc/269693},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Tamotsu Izumida
AU - Ken-Ichi Mitani
AU - Kichi-Suke Saito
TI - Another approach to characterizations of generalized triangle inequalities in normed spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 11
SP - 1615
EP - 1623
AB - In this paper, we consider a generalized triangle inequality of the following type: \[\left\Vert {x_1 + \cdots + x_n } \right\Vert ^p \leqslant \frac{{\left\Vert {x_1 } \right\Vert ^p }}{{\mu _1 }} + \cdots + \frac{{\left\Vert {x_2 } \right\Vert ^p }}{{\mu _n }}\left( {for all x_1 , \ldots ,x_n \in X} \right),\]
where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].
LA - eng
KW - Generalized triangle inequality; Absolute norm; ψ-direct sum; Generalized Hölder inequality; generalized triangle inequality; absolute norm; -direct sum; generalized Hölder inequality
UR - http://eudml.org/doc/269693
ER -
References
top- [1] Ansari A.H., Moslehian M.S., Refinements of reverse triangle inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 2005, 6(3), article 64, 12pp. Zbl1095.46016
- [2] Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Characterizations of a generalized triangle inequality in normed spaces, Nonlinear Anal., 2012, 75(2), 735–741 http://dx.doi.org/10.1016/j.na.2011.09.004 Zbl1242.46029
- [3] Kato M., Saito K.-S., Tamura T., On ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc., 2003, 75(3), 413–422 http://dx.doi.org/10.1017/S1446788700008193 Zbl1055.46010
- [4] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 Zbl1121.46019
- [5] Maligranda L., Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2008, 2(2), 31–41 Zbl1147.46020
- [6] Mitani K.-I., Oshiro S., Saito K.-S., Smoothness of ψ-direct sums of Banach spaces, Math. Ineq. Appl., 2005, 8(1), 147–157 Zbl1084.46012
- [7] Mitani K.-I., Saito K.-S., On sharp triangle inequalities in Banach spaces II, J. Inequal. Appl., 2010, Art. ID 323609, 17pp.
- [8] Mitani K.-I., Saito K.-S., Kato M., Tamura T., On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl., 2007, 336(2), 1178–1186 http://dx.doi.org/10.1016/j.jmaa.2007.03.036 Zbl1127.46015
- [9] Nikolova L., Persson L.-E., Varošanec S., The Beckenbach-Dresher inequality in the -direct sums of spaces and related results, J. Inequal. Appl., 2012, 2012:7, 14pp. http://dx.doi.org/10.1186/1029-242X-2012-7 Zbl1275.26042
- [10] Saito K.-S., Kato M., Takahashi Y., Von Neumann-Jordan constant of absolute normalized norms on ℂ2, J. Math. Anal. Appl., 2000, 244(2), 515–532 http://dx.doi.org/10.1006/jmaa.2000.6727
- [11] Saito K.-S., Kato M., Takahashi Y., Absolute norms on ℂn, J. Math. Anal. Appl., 2000, 252(2), 879–905 http://dx.doi.org/10.1006/jmaa.2000.7139
- [12] Takahasi S.-E., Rassias J.M., Saitoh S., Takahashi Y., Refined generalizations of the triangle inequality on Banach spaces, Math. Ineq. Appl., 2010, 13(4), 733–741
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.