Strong surjectivity of maps from 2-complexes into the 2-sphere
Open Mathematics (2010)
- Volume: 8, Issue: 3, page 421-429
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMarcio Fenille, and Oziride Neto. "Strong surjectivity of maps from 2-complexes into the 2-sphere." Open Mathematics 8.3 (2010): 421-429. <http://eudml.org/doc/269695>.
@article{MarcioFenille2010,
abstract = {Given a model 2-complex K P of a group presentation P, we associate to it an integer matrix ΔP and we prove that a cellular map f: K P → S 2 is root free (is not strongly surjective) if and only if the diophantine linear system ΔP Y = \[ \overrightarrow\{deg\} \]
(f) has an integer solution, here \[ \overrightarrow\{deg\} \]
(f)is the so-called vector-degree of f},
author = {Marcio Fenille, Oziride Neto},
journal = {Open Mathematics},
keywords = {Strong surjectivity; Two-dimensional complexes; Group presentation; Diophantine linear system; strong surjectivity; two-dimensional complex; group presentation},
language = {eng},
number = {3},
pages = {421-429},
title = {Strong surjectivity of maps from 2-complexes into the 2-sphere},
url = {http://eudml.org/doc/269695},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Marcio Fenille
AU - Oziride Neto
TI - Strong surjectivity of maps from 2-complexes into the 2-sphere
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 421
EP - 429
AB - Given a model 2-complex K P of a group presentation P, we associate to it an integer matrix ΔP and we prove that a cellular map f: K P → S 2 is root free (is not strongly surjective) if and only if the diophantine linear system ΔP Y = \[ \overrightarrow{deg} \]
(f) has an integer solution, here \[ \overrightarrow{deg} \]
(f)is the so-called vector-degree of f
LA - eng
KW - Strong surjectivity; Two-dimensional complexes; Group presentation; Diophantine linear system; strong surjectivity; two-dimensional complex; group presentation
UR - http://eudml.org/doc/269695
ER -
References
top- [1] Aniz C., Strong surjectivity of mappings of some 3-complexes into 3-manifolds, Fund. Math., 2006, 192(3), 195–214 http://dx.doi.org/10.4064/fm192-3-1 Zbl1111.55001
- [2] Aniz C., Strong surjectivity of mappings of some 3-complexes into , Cent. Eur. J. Math., 2008, 6(4), 497–503 http://dx.doi.org/10.2478/s11533-008-0042-8 Zbl1153.55002
- [3] Brooks R., Nielsen root theory, In: Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, 375–431 http://dx.doi.org/10.1007/1-4020-3222-6_11
- [4] Ching W.S., Linear equation over commutative rings, Linear Algebra and Appl., 1977, 18(3), 257–266 http://dx.doi.org/10.1016/0024-3795(77)90055-6
- [5] Gonçalves D.L., Coincidence theory for maps from a complex into a manifold, Topology Appl., 1999, 92(1), 63–77 http://dx.doi.org/10.1016/S0166-8641(97)00231-9 Zbl0927.55003
- [6] Gonçalves D.L., Coincidence theory, In: Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, 3–42 http://dx.doi.org/10.1007/1-4020-3222-6_1 Zbl1081.55002
- [7] Gonçalves D.L., Wong P., Wecken property for roots, Proc. Amer. Math. Soc., 2005, 133(9), 2779–2782 http://dx.doi.org/10.1090/S0002-9939-05-07820-2 Zbl1071.55001
- [8] Hu S.T., Homotopy Theory, Academic Press, New York-London, 1959
- [9] Munkres J.R., Topology, 2nd ed., Princeton Hall, Upper Saddle River, 2000
- [10] Sieradski A.J., Algebraic topology for two-dimensional complexes, In: Two-dimensional Homotopy and Combinatorial Group Theory, London Mathematical Society Lecture Notes Series, 197, Cambridge University Press, Cambridge, 1993, 51–96 http://dx.doi.org/10.1017/CBO9780511629358.004 Zbl0811.57002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.