Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations

Georgi Ganchev; Vesselka Mihova

Open Mathematics (2013)

  • Volume: 11, Issue: 1, page 133-148
  • ISSN: 2391-5455

Abstract

top
On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces and obtain the natural non-linear partial differential equations describing them. We obtain a characterization of space-like surfaces, whose curvatures satisfy a linear relation, by means of their natural partial differential equations. We obtain the ten natural PDE’s describing all linear fractional space-like Weingarten surfaces.

How to cite

top

Georgi Ganchev, and Vesselka Mihova. "Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations." Open Mathematics 11.1 (2013): 133-148. <http://eudml.org/doc/269698>.

@article{GeorgiGanchev2013,
abstract = {On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces and obtain the natural non-linear partial differential equations describing them. We obtain a characterization of space-like surfaces, whose curvatures satisfy a linear relation, by means of their natural partial differential equations. We obtain the ten natural PDE’s describing all linear fractional space-like Weingarten surfaces.},
author = {Georgi Ganchev, Vesselka Mihova},
journal = {Open Mathematics},
keywords = {Space-like W-surfaces in Minkowski space; Natural parameters on space-like W-surfaces in Minkowski space; Natural PDE’s of space-like W-surfaces in Minkowski space; space-like W-surfaces; Minkowski space; natural parameters on space-like W-surfaces; natural PDE's of space-like W-surfaces},
language = {eng},
number = {1},
pages = {133-148},
title = {Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations},
url = {http://eudml.org/doc/269698},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Georgi Ganchev
AU - Vesselka Mihova
TI - Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations
JO - Open Mathematics
PY - 2013
VL - 11
IS - 1
SP - 133
EP - 148
AB - On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces and obtain the natural non-linear partial differential equations describing them. We obtain a characterization of space-like surfaces, whose curvatures satisfy a linear relation, by means of their natural partial differential equations. We obtain the ten natural PDE’s describing all linear fractional space-like Weingarten surfaces.
LA - eng
KW - Space-like W-surfaces in Minkowski space; Natural parameters on space-like W-surfaces in Minkowski space; Natural PDE’s of space-like W-surfaces in Minkowski space; space-like W-surfaces; Minkowski space; natural parameters on space-like W-surfaces; natural PDE's of space-like W-surfaces
UR - http://eudml.org/doc/269698
ER -

References

top
  1. [1] Baran H., Marvan M., On integrability of Weingarten surfaces: a forgotten class, J. Phys. A, 2009, 42(40), #404007 http://dx.doi.org/10.1088/1751-8113/42/40/404007 Zbl1189.53006
  2. [2] Baran H., Marvan M., Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation, Nonlinearity, 2010, 23(10), 2577–2597 http://dx.doi.org/10.1088/0951-7715/23/10/013 Zbl1204.53004
  3. [3] Bianchi L., Lezioni di Geometria Differenziale, Spoerri, Pisa, 1894 
  4. [4] Bianchi L., Vorlesungen über Differentialgeometrie, Teubner, Leipzig, 1899 Zbl0193.49401
  5. [5] Buyske S.G., Bäcklund transformations of linear Weingarten surfaces in Minkowski three-space, J. Math. Phys., 1994, 35(9), 4719–4724 http://dx.doi.org/10.1063/1.530809 Zbl0820.53033
  6. [6] Cieśliński J., A generalized formula for integrable classes of surfaces in Lie algebras, J. Math. Phys., 1997, 38(8), 4255–4272 http://dx.doi.org/10.1063/1.532093 Zbl0893.53003
  7. [7] Eisenhart L.P., A Treatise in the Differential Geometry of Curves and Surfaces, Ginn and Co., Boston-New York-Chicago-London, 1909 Zbl40.0657.01
  8. [8] Fokas A.S., Gelfand I.M., Surfaces on Lie groups, on Lie algebras, and their integrability, Comm. Math. Phys., 1996, 177(1), 203–220 http://dx.doi.org/10.1007/BF02102436 Zbl0864.53003
  9. [9] Fokas A.S., Gel’fand I.M., Finkel F., Liu Q.M., A formula for constructing infinitely many surfaces on Lie algebras and integrable equations, Selecta Math., 2000, 6(4), 347–375 http://dx.doi.org/10.1007/PL00001392 
  10. [10] Ganchev G., Mihova V., On the invariant theory of Weingarten surfaces in Euclidean space, J. Phys. A, 2010, 43(40), #405210 http://dx.doi.org/10.1088/1751-8113/43/40/405210 Zbl1201.53003
  11. [11] Ganchev G., Mihova V., Natural PDE’s of linear fractional Weingarten surfaces in Euclidean space, preprint available at http://arxiv.org/abs/1105.3085 Zbl1201.53003
  12. [12] Hu H.S., The construction of hyperbolic surfaces in 3-dimensional Minkowski space and sinh-Laplace equation, Acta Math. Sinica, 1985, 1(1), 79–86 http://dx.doi.org/10.1007/BF02560006 Zbl0594.53014
  13. [13] Hu H., Darboux transformations between Δα = sinh α and Δα = sin α and the application to pseudo-spherical congruences in ℝ 12, Lett. Math. Phys., 1999, 48(2), 187–195 http://dx.doi.org/10.1023/A:1007583627973 
  14. [14] Lie S., Ueber Flächen, deren Krümmungsradien durch eine Relation verknüpft sind, Archiv for Mathematik og Naturvidenskab, 4, 1879, 507–512 
  15. [15] v. Lilienthal R., Bemerkung über diejenigen Flächen, bei denen die Differenz der Hauptkrümmungen constant ist, Acta Math., 1887, 11(1–4), 391–394 http://dx.doi.org/10.1007/BF02612331 
  16. [16] v. Lilienthal R., Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 3 - Geometrie, 3. Teil, D. Differentialgeometrie, 5. Besondere Flächen, Teubner, Leipzig, 1902/1903 
  17. [17] Lund F., Regge T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D, 1976, 14(6), 1524–1535 http://dx.doi.org/10.1103/PhysRevD.14.1524 Zbl0996.81509
  18. [18] Milnor T.K., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan Math. J., 1983, 30(3), 309–315 http://dx.doi.org/10.1307/mmj/1029002907 Zbl0553.53032
  19. [19] Ribaucour M., A note on the evolution of surfaces, C. R. Acad. Sci. Paris Sér., 1872, 64, 1399–1403 (in French) Zbl04.0370.01
  20. [20] Sym A., Soliton surfaces and their applications (soliton geometry from spectral problems), In: Geometric Aspects of the Einstein Equations and Integrable Systems, Scheveningen, August 26–31, 1984, Lecture Notes in Phys., 239, Springer, Berlin-Heidelberg, 1985, 154–231 http://dx.doi.org/10.1007/3-540-16039-6_6 
  21. [21] Weingarten J., Ueber die Oberflächen, für welche einer der beiden Hauptkrümmungshalbmesser eine Funktion des anderen ist, J. Reine Angew. Math., 1863, 62, 160–173 http://dx.doi.org/10.1515/crll.1863.62.160 
  22. [22] Weingarten J., Ueber eine Eigenschaft der Flächen, bei denen der eine Hauptkrümmungsradius eine Funktion des anderen ist, J. Reine Angew. Math., 1888, 103, 184 Zbl20.0763.01
  23. [23] Wu H., Weingarten surfaces and nonlinear partial differential equations, Ann. Global Anal. Geom., 1993, 11(1), 49–64 http://dx.doi.org/10.1007/BF00773364 Zbl0811.53006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.