Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of x q = a

Manuel Ladra; Bakhrom Omirov; Utkir Rozikov

Open Mathematics (2013)

  • Volume: 11, Issue: 6, page 1083-1093
  • ISSN: 2391-5455

Abstract

top
We study the p-adic equation x q = a over the field of p-adic numbers. We construct an algorithm which gives a solvability criteria in the case of q = p m and present a computer program to compute the criteria for any fixed value of m ≤ p − 1. Moreover, using this solvability criteria for q = 2; 3; 4; 5; 6, we classify p-adic 6-dimensional filiform Leibniz algebras.

How to cite

top

Manuel Ladra, Bakhrom Omirov, and Utkir Rozikov. "Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of x q = a." Open Mathematics 11.6 (2013): 1083-1093. <http://eudml.org/doc/269706>.

@article{ManuelLadra2013,
abstract = {We study the p-adic equation x q = a over the field of p-adic numbers. We construct an algorithm which gives a solvability criteria in the case of q = p m and present a computer program to compute the criteria for any fixed value of m ≤ p − 1. Moreover, using this solvability criteria for q = 2; 3; 4; 5; 6, we classify p-adic 6-dimensional filiform Leibniz algebras.},
author = {Manuel Ladra, Bakhrom Omirov, Utkir Rozikov},
journal = {Open Mathematics},
keywords = {p-adic number; Solvability of p-adic equation; Filiform Leibniz algebra; p-adic numbers; solvability of p-adic equations; filiform Leibniz algebras},
language = {eng},
number = {6},
pages = {1083-1093},
title = {Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of x q = a},
url = {http://eudml.org/doc/269706},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Manuel Ladra
AU - Bakhrom Omirov
AU - Utkir Rozikov
TI - Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of x q = a
JO - Open Mathematics
PY - 2013
VL - 11
IS - 6
SP - 1083
EP - 1093
AB - We study the p-adic equation x q = a over the field of p-adic numbers. We construct an algorithm which gives a solvability criteria in the case of q = p m and present a computer program to compute the criteria for any fixed value of m ≤ p − 1. Moreover, using this solvability criteria for q = 2; 3; 4; 5; 6, we classify p-adic 6-dimensional filiform Leibniz algebras.
LA - eng
KW - p-adic number; Solvability of p-adic equation; Filiform Leibniz algebra; p-adic numbers; solvability of p-adic equations; filiform Leibniz algebras
UR - http://eudml.org/doc/269706
ER -

References

top
  1. [1] Akbaraliev B.B., Classification of six-dimensional complex filiform Leibniz algebras, Uzbek. Mat. Zh., 2004, 2, 17–22 (in Russian) 
  2. [2] Albeverio S., Cianci R., Khrennikov A.Yu., p-adic valued quantization, p-adic Numbers Ultrametric Anal. Appl., 2009, 1(2), 91–104 http://dx.doi.org/10.1134/S2070046609020010[Crossref] Zbl1187.81137
  3. [3] Aref’eva I.Ya., Dragovich B., Frampton P.H., Volovich I.V., The wave function of the universe and p-adic gravity, Internat. J. Modern Phys. A, 1991, 6(24), 4341–4358 http://dx.doi.org/10.1142/S0217751X91002094[Crossref] Zbl0733.53039
  4. [4] Ayupov Sh.A., Kurbanbaev T.K., The classification of 4-dimensional p-adic filiform Leibniz algebras, TWMS J. Pure Appl. Math., 2010, 1(2), 155–162 Zbl1246.17004
  5. [5] Casas J.M., Omirov B.A., Rozikov U.A., Solvability criteria for the equation x q = a in the field of p-adic numbers, preprint available at http://128.84.158.119/abs/1102.2156v1 Zbl1296.11157
  6. [6] Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., On p-adic mathematical physics, p-adic Numbers Ultrametric Anal. Appl., 2009, 1(1), 1–17 http://dx.doi.org/10.1134/S2070046609010014[Crossref] Zbl1187.81004
  7. [7] Fekak A., Srhir A., On the p-adic algebra and its applications, Int. Math. Forum, 2009, 4(25–28), 1267–1280 Zbl1273.13045
  8. [8] Felipe R., López-Reyes N., Ongay F., R-matrices for Leibniz algebras, Lett. Math. Phys., 2003, 63(2), 157–164 http://dx.doi.org/10.1023/A:1023067727095[Crossref] Zbl1053.17003
  9. [9] Freund P.G.O., Witten E., Adelic string amplitudes, Phys. Lett. B, 1987, 199(2), 191–194 http://dx.doi.org/10.1016/0370-2693(87)91357-8[Crossref] 
  10. [10] Gómez J.R., Omirov B.A., On classification of complex filiform Leibniz algebras, preprint available at http://128.84.158.119/abs/math/0612735v1 
  11. [11] Hagiwara Y., Nambu-Jacobi structures and Jacobi algebroids, J. Phys. A, 2004, 37(26), 6713–6725 http://dx.doi.org/10.1088/0305-4470/37/26/008[Crossref] 
  12. [12] Haskell D., A transfer theorem in constructive p-adic algebra, Ann. Pure Appl. Logic, 1992, 58(1), 29–55 http://dx.doi.org/10.1016/0168-0072(92)90033-V[Crossref] 
  13. [13] Ibáñez R., de León M., Marrero J.C., Padrón E., Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A, 1999, 32(46), 8129–8144 http://dx.doi.org/10.1088/0305-4470/32/46/310[Crossref] Zbl0962.53047
  14. [14] Khrennikov A.Yu., p-adic quantum mechanics with p-adic valued functions, J. Math. Phys., 1991, 32(4), 932–937 http://dx.doi.org/10.1063/1.529353[Crossref] Zbl0746.46067
  15. [15] Khrennikov A.Yu., p-adic Valued Distributions in Mathematical Physics, Math. Appl., 309, Kluwer, Dordrecht, 1994 Zbl0833.46061
  16. [16] Khrennikov A.Yu., Rakić Z., Volovich I.V. (Eds.), p-adic Mathematical Physics, AIP Conference Proceedings, 826, American Institue of Physics, New York, 2006 
  17. [17] Khudoyberdiyev A.Kh., Kurbanbaev T.K., Omirov B.A., Classification of three-dimensional solvable p-adic Leibniz algebras, p-adic Numbers Ultrametric Anal. Appl., 2010, 2(3), 207–221 http://dx.doi.org/10.1134/S2070046610030039[Crossref] Zbl1305.17002
  18. [18] Koblitz N., p-adic Numbers, p-adic Analysis, and Zeta-Functions, Grad. Texts in Math., 58, Springer, New York-Heidelberg, 1977 http://dx.doi.org/10.1007/978-1-4684-0047-2[Crossref] 
  19. [19] Kozyrev S.V., Khrennikov A.Yu., Localization in space for a free particle in ultrametric quantum mechanics, Dokl. Math., 2006, 74(3), 906–909 http://dx.doi.org/10.1134/S1064562406060305[Crossref] Zbl1209.81115
  20. [20] Kuku A.O., Some finiteness theorems in the K-theory of orders in p-adic algebras, J. London Math. Soc., 1976, 13(1), 122–128 http://dx.doi.org/10.1112/jlms/s2-13.1.122[Crossref] Zbl0323.18011
  21. [21] Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math., 1993, 39(3–4), 269–293 
  22. [22] Marinari E., Parisi G., On the p-adic five-point function, Phys. Lett. B, 1988, 203(1–2), 52–54 
  23. [23] Mukhamedov F., Rozikov U., On rational p-adic dynamical systems, Methods Funct. Anal. Topology, 2004, 10(2), 21–31 Zbl1053.37022
  24. [24] Mukhamedov F.M., Rozikov U.A., On Gibbs measures of p-adic Potts model on the Cayley tree, Indag. Math. (N.S.), 2004, 15(1), 85–99 http://dx.doi.org/10.1016/S0019-3577(04)90007-9[Crossref] Zbl1161.82311
  25. [25] Omirov B.A., Rakhimov I.S., On Lie-like complex filiform Leibniz algebras, Bull. Aust. Math. Soc., 2009, 79(3), 391–404 http://dx.doi.org/10.1017/S000497270900001X[Crossref][WoS] Zbl1194.17001
  26. [26] Schikhof W.H., Ultrametric Calculus, Cambridge Stud. Adv. Math., 4, Cambridge University Press, Cambridge, 1984 
  27. [27] Vladimirov V.S., Volovich I.V., Zelenov E.I., p-adic Analysis and Mathematical Physics, Ser. Soviet East European Math., 1, World Scientific, River Edge, 1994 http://dx.doi.org/10.1142/1581[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.