Hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety

Vitaly Tarasov; Alexander Varchenko

Open Mathematics (2014)

  • Volume: 12, Issue: 5, page 694-710
  • ISSN: 2391-5455

Abstract

top
We describe hypergeometric solutions of the quantum differential equation of the cotangent bundle of a 𝔤 𝔩 n partial flag variety. These hypergeometric solutions manifest the Landau-Ginzburg mirror symmetry for the cotangent bundle of a partial flag variety.

How to cite

top

Vitaly Tarasov, and Alexander Varchenko. "Hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety." Open Mathematics 12.5 (2014): 694-710. <http://eudml.org/doc/269707>.

@article{VitalyTarasov2014,
abstract = {We describe hypergeometric solutions of the quantum differential equation of the cotangent bundle of a \[\mathfrak \{g\}\mathfrak \{l\}\_n\] partial flag variety. These hypergeometric solutions manifest the Landau-Ginzburg mirror symmetry for the cotangent bundle of a partial flag variety.},
author = {Vitaly Tarasov, Alexander Varchenko},
journal = {Open Mathematics},
keywords = {Flag varieties; Yangian; Quantum differential equation; Dynamical connection; Hypergeometric solutions; flag varieties; quantum differential equation; dynamical connection; hypergeometric solutions},
language = {eng},
number = {5},
pages = {694-710},
title = {Hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety},
url = {http://eudml.org/doc/269707},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Vitaly Tarasov
AU - Alexander Varchenko
TI - Hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety
JO - Open Mathematics
PY - 2014
VL - 12
IS - 5
SP - 694
EP - 710
AB - We describe hypergeometric solutions of the quantum differential equation of the cotangent bundle of a \[\mathfrak {g}\mathfrak {l}_n\] partial flag variety. These hypergeometric solutions manifest the Landau-Ginzburg mirror symmetry for the cotangent bundle of a partial flag variety.
LA - eng
KW - Flag varieties; Yangian; Quantum differential equation; Dynamical connection; Hypergeometric solutions; flag varieties; quantum differential equation; dynamical connection; hypergeometric solutions
UR - http://eudml.org/doc/269707
ER -

References

top
  1. [1] Braverman A., Maulik D., Okounkov A., Quantum cohomology of the Springer resolution, Adv. Math., 2011, 227(1), 421–458 http://dx.doi.org/10.1016/j.aim.2011.01.021 Zbl1226.14069
  2. [2] Frenkel I.B., Reshetikhin N.Yu., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys., 1992, 146(1), 1–60 Zbl0760.17006
  3. [3] Givental A.B., Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices, 1996, 13, 613–663 http://dx.doi.org/10.1155/S1073792896000414 Zbl0881.55006
  4. [4] Givental A., Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, In: Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser., 180, American Mathematical Society, Providence, 1997, 103–115 Zbl0895.32006
  5. [5] Givental A.B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., 2001, 1(4), 551–568 Zbl1008.53072
  6. [6] Gorbounov V., Rimányi R., Tarasov V., Varchenko A., Quantum cohomology of the cotangent bundle of a flag variety as a Yangian Bethe algebra, J. Geom. Phys., 2013, 74, 56–86 http://dx.doi.org/10.1016/j.geomphys.2013.07.006 Zbl1287.81063
  7. [7] Markov Y., Varchenko A., Hypergeometric solutions of trigonometric KZ equations satisfy dynamical difference equations, Adv. Math., 2002, 166(1), 100–147 http://dx.doi.org/10.1006/aima.2001.2027 Zbl1018.32016
  8. [8] Maulik D., Okounkov A., Quantum groups and quantum cohomology, preprint available at http://arxiv.org/abs/1211.1287 Zbl1226.14069
  9. [9] Mukhin E., Tarasov V., Varchenko A., Bethe eigenvectors of higher transfer matrices, J. Stat. Mech. Theory Exp., 2006, 8, #P08002 
  10. [10] Mukhin E., Tarasov V., Varchenko A., Bethe algebra of the 𝔤 𝔩 N + 1 Gaudin model and algebra of functions on the critical set of the master function, In: New Trends in Quantum Integrable Systems, World Scientific, Hackensack, 2011, 307–324 http://dx.doi.org/10.1142/97898143243730016 Zbl1221.82038
  11. [11] Mukhin E., Tarasov V., Varchenko A., Three sides of the geometric Langlands correspondence for 𝔤 𝔩 N Gaudin model and Bethe vector averaging maps, In: Arrangements of Hyperplanes-Sapporo 2009, Sapporo, August 1–13, 2009, Adv. Stud. Pure Math., 62, Mathematrical Society of Japan, Tokyo, 2012, 475–511 Zbl1260.82025
  12. [12] Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 1994, 76(2), 365–416 http://dx.doi.org/10.1215/S0012-7094-94-07613-8 Zbl0826.17026
  13. [13] Nakajima H., Quiver varieties and Kac-Moody algebras, Duke Math. J., 1998, 91(3), 515–560 http://dx.doi.org/10.1215/S0012-7094-98-09120-7 Zbl0970.17017
  14. [14] Rimányi R., Stevens L., Varchenko A., Combinatorics of rational functions and Poincaré-Birchoff-Witt expansions of the canonical U ( 𝔫 _ ) -valued differential form, Ann. Comb., 2005, 9(1), 57–74 http://dx.doi.org/10.1007/s00026-005-0241-3 Zbl1088.33007
  15. [15] Rimányi R., Tarasov V., Varchenko A., Partial flag varieties, stable envelopes and weight functions, Quantum Topol. (in press), preprint available at http://arxiv.org/abs/1212.6240 Zbl06452363
  16. [16] Schechtman V.V., Varchenko A.N., Arrangements of hyperplanes and Lie algebra homology, Invent. Math., 1991, 106(1), 139–194 http://dx.doi.org/10.1007/BF01243909 Zbl0754.17024
  17. [17] Tarasov V., Varchenko A., Geometry of q-hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math., 1997, 128(3), 501–588 http://dx.doi.org/10.1007/s002220050151 Zbl0877.33013
  18. [18] Tarasov V., Varchenko A., Difference equations compatible with trigonometric KZ differential equations, Internat. Math. Res. Notices, 2000, 15, 801–829 http://dx.doi.org/10.1155/S1073792800000441 Zbl0971.39009
  19. [19] Tarasov V., Varchenko A., Duality for Knizhnik-Zamolodchikov and dynamical equations, Acta Appl. Math., 2002, 73(1–2), 141–154 http://dx.doi.org/10.1023/A:1019787006990 Zbl1013.17006
  20. [20] Tarasov V., Varchenko A., Combinatorial formulae for nested Bethe vectors, SIGMA Symmetry Integrability Geom. Methods Appl., 2013, 9, #048 Zbl1288.82024
  21. [21] Toledano Laredo V., The trigonometric Casimir connection of a simple Lie algebra, J. Algebra, 2011, 329, 286–327 http://dx.doi.org/10.1016/j.jalgebra.2010.05.025 Zbl1241.17012
  22. [22] Varchenko A.N., Tarasov V.O., Jackson integral representations for solutions of the quantized Knizhnik-Zamolodchikov equation, St. Petersburg Math. J., 1995, 6(2), 275–313 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.