Slice modules over minimal 2-fundamental algebras

Zygmunt Pogorzały; Karolina Szmyt

Open Mathematics (2007)

  • Volume: 5, Issue: 1, page 164-180
  • ISSN: 2391-5455

Abstract

top
We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.

How to cite

top

Zygmunt Pogorzały, and Karolina Szmyt. "Slice modules over minimal 2-fundamental algebras." Open Mathematics 5.1 (2007): 164-180. <http://eudml.org/doc/269709>.

@article{ZygmuntPogorzały2007,
abstract = {We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.},
author = {Zygmunt Pogorzały, Karolina Szmyt},
journal = {Open Mathematics},
keywords = {Minimal 2-fundamental algebra; Auslander-Reiten quiver; slice module; tilting module; minimal 2-fundamental algebras; Auslander-Reiten quivers; tilting modules; Auslander-Reiten components; postprojective slice modules; cotilting modules; hereditary algebras; preinjective slice modules},
language = {eng},
number = {1},
pages = {164-180},
title = {Slice modules over minimal 2-fundamental algebras},
url = {http://eudml.org/doc/269709},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Zygmunt Pogorzały
AU - Karolina Szmyt
TI - Slice modules over minimal 2-fundamental algebras
JO - Open Mathematics
PY - 2007
VL - 5
IS - 1
SP - 164
EP - 180
AB - We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.
LA - eng
KW - Minimal 2-fundamental algebra; Auslander-Reiten quiver; slice module; tilting module; minimal 2-fundamental algebras; Auslander-Reiten quivers; tilting modules; Auslander-Reiten components; postprojective slice modules; cotilting modules; hereditary algebras; preinjective slice modules
UR - http://eudml.org/doc/269709
ER -

References

top
  1. [1] I. Assem: “Tilting theory - an introduction”, In: Topics in Algebras, Banach Center Publications, Vol. 26, Part I, PWN, Warszawa, 1990, pp. 127–180. 
  2. [2] M. Auslander and I. Reiten: “Representation theory of artin algebras III”, Comm. Alg., Vol. 3, (1975), pp. 239–294. 
  3. [3] M. Auslander and I. Reiten: “Representation theory of artin algebras IV”, Comm. Alg., Vol. 5, (1977), pp. 443–518. 
  4. [4] M. Auslander, I. Reiten and S.O. Smalø: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., Vol. 36, Cambridge Univ. Press, Cambridge, 1995. 
  5. [5] K. Bongartz: Tilted algebras, LNM 903, Springer, Berlin, 1981, pp. 26–38. 
  6. [6] M.C.R. Butler and C.M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Alg., Vol. 15, (1987), pp. 145–179. Zbl0612.16013
  7. [7] P. Dowbor and A. Skowroński: “Galois coverings of representation-infinite algebras”, Comment. Math. Helv., Vol. 62, (1987), pp. 311–337. Zbl0628.16019
  8. [8] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, INM 831, Springer, Berlin, 1980, pp. 1–71. Zbl0445.16023
  9. [9] D. Happel and C.M. Ringel: “Tilted algebras”, Trans. Amer. Math. Soc., Vol. 274, (1982), pp. 399–443. http://dx.doi.org/10.2307/1999116 
  10. [10] F. Huard: “Tilted gentle algebras”, Comm. Alg., Vol. 26(1), (1998), pp. 63–72. Zbl0898.16010
  11. [11] F. Huard and Sh. Liu: “Tilted special biserial algebras”, J. Algebra, Vol. 217, (1999), pp. 679–700. http://dx.doi.org/10.1006/jabr.1998.7828 
  12. [12] F. Huard and Sh. Liu: “Tilted string algebras”, J. Pure Appl. Algebra, Vol. 153, (2000), pp. 151–164. http://dx.doi.org/10.1016/S0022-4049(99)00101-2 Zbl0962.16009
  13. [13] Z. Pogorzały and M. Sufranek: “Starting and ending components of the Auslander-Reiten quivers of a class of special biserial algebras”, Colloq. Math., Vol. 99(1), (2004), pp. 111–144. Zbl1107.16022
  14. [14] C.M. Ringel: Tame algebras and integral quadratic forms, LNM 1099, Springer, Berlin, 1984. 
  15. [15] J. Schröer: “Modules without self-extensions over gentle algebras”, J. Algebra, Vol. 216, (1999), pp. 178–189. http://dx.doi.org/10.1006/jabr.1998.7696 
  16. [16] A. Skowroński: “Generalized standard Auslander-Reiten components”, J. Math. Soc. Japan, Vol. 46, (1994), pp. 517–543. http://dx.doi.org/10.2969/jmsj/04630517 Zbl0828.16011
  17. [17] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. Zbl0511.16021
  18. [18] B. Wald and J. Waschbüsch: “Tame biserial algebras”, J. Algebra, Vol. 95, (1985), pp. 480–500. http://dx.doi.org/10.1016/0021-8693(85)90119-X Zbl0567.16017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.