Characterization of intermediate values of the triangle inequality II
Hiroki Sano; Tamotsu Izumida; Ken-Ichi Mitani; Tomoyoshi Ohwada; Kichi-Suke Saito
Open Mathematics (2014)
- Volume: 12, Issue: 5, page 778-786
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topHiroki Sano, et al. "Characterization of intermediate values of the triangle inequality II." Open Mathematics 12.5 (2014): 778-786. <http://eudml.org/doc/269713>.
@article{HirokiSano2014,
abstract = {In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.},
author = {Hiroki Sano, Tamotsu Izumida, Ken-Ichi Mitani, Tomoyoshi Ohwada, Kichi-Suke Saito},
journal = {Open Mathematics},
keywords = {Triangle inequalities; Strictly convex Banach spaces; Norm inequality; triangle inequalities; strictly convex Banach spaces; norm inequality},
language = {eng},
number = {5},
pages = {778-786},
title = {Characterization of intermediate values of the triangle inequality II},
url = {http://eudml.org/doc/269713},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Hiroki Sano
AU - Tamotsu Izumida
AU - Ken-Ichi Mitani
AU - Tomoyoshi Ohwada
AU - Kichi-Suke Saito
TI - Characterization of intermediate values of the triangle inequality II
JO - Open Mathematics
PY - 2014
VL - 12
IS - 5
SP - 778
EP - 786
AB - In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.
LA - eng
KW - Triangle inequalities; Strictly convex Banach spaces; Norm inequality; triangle inequalities; strictly convex Banach spaces; norm inequality
UR - http://eudml.org/doc/269713
ER -
References
top- [1] Abramovich Y.A., Aliprantis C.D., Problems in Operator Theory, Grad. Stud. in Math., 51, American Mathematical Society, Providence, 2002 Zbl1022.47002
- [2] Ansari A.H., Moslehian M.S., More on reverse triangle inequality in inner product spaces, Int. J. Math. Math. Sci., 2005, 18, 2883–2893 http://dx.doi.org/10.1155/IJMMS.2005.2883 Zbl1101.46018
- [3] Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Characterization of a generalized triangle inequality in normed spaces, Nonlinear Anal., 2012, 75(2), 735–741 http://dx.doi.org/10.1016/j.na.2011.09.004 Zbl1242.46029
- [4] Dragomir S.S., Reverses of the triangle inequality in Banach spaces, JIPAM. J. Inequal. Pure Appl. Math., 2005, 6(5), #129 Zbl1093.46014
- [5] Dragomir S.S., Generalizations of the Pečarić-Rajić inequality in normed linear spaces, Math. Inequal. Appl., 2009, 12(1), 53–65 Zbl1177.26034
- [6] Fujii M., Kato M., Saito K.-S., Tamura T., Sharp mean triangle inequality, Math. Inequal. Appl., 2010, 13(4), 743–752 Zbl1208.46021
- [7] Hsu C.-Y., Shaw S.-Y., Wong H.-J., Refinements of generalized triangle inequalities, J. Math. Anal. Appl., 2008, 344(1), 17–31 http://dx.doi.org/10.1016/j.jmaa.2008.01.088 Zbl1145.26007
- [8] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 Zbl1121.46019
- [9] Maligranda L., Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2008, 2(2), 31–41 Zbl1147.46020
- [10] Martirosyan M.S., Samarchyan S.V., Inversion of the triangle inequality in ℝn, J. Contemp. Math. Anal., 2003, 38(4), 56–61 Zbl1160.51303
- [11] Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035 Zbl1263.46025
- [12] Mitani K.-I., Saito K.-S., On sharp triangle inequalities in Banach spaces II, J. Inequal. Appl., 2010, #323609
- [13] Mitani K.-I., Saito K.-S., Kato M., Tamura T., On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl., 2007, 336(2), 1178–1186 http://dx.doi.org/10.1016/j.jmaa.2007.03.036 Zbl1127.46015
- [14] Mizuguchi H., Saito K.-S., Tanaka R., On the calculation of the Dunkl-Williams constant of normed linear spaces, Cent. Eur. J. Math., 2013, 11(7), 1212–1227 http://dx.doi.org/10.2478/s11533-013-0238-4 Zbl1283.46013
- [15] Moslehian M.S., Dadipour F., Rajic R., Maric A., A glimpse at the Dunkl-Williams inequality, Banach J. Math. Anal., 2011, 5(2), 138–151 Zbl1225.47022
- [16] Ohwada T., On a continuous mapping and sharp triangle inequalities, In: Inequalities and Applications 2010, International Series of Numerical Mathematics, 161, Springer, Basel, 2011, 125–136
- [17] Saito K.-S., Mitani K.-I., On sharp triangle inequalities in Banach spaces and their applications, In: Banach and Function Spaces III, Yokohama Publications, Yokohama, 2011, 295–304 Zbl1294.46012
- [18] Saitoh S., Generalizations of the triangle inequality, JIPAM. J. Inequal. Pure Appl. Math., 2003, 43), #62 Zbl1056.46029
- [19] Zhang L., Ohwada T., Chō M., Reverses of the triangle inequality in inner product spaces, Math. Inequal. Appl. (in press) Zbl1309.46008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.