Characterization of intermediate values of the triangle inequality II

Hiroki Sano; Tamotsu Izumida; Ken-Ichi Mitani; Tomoyoshi Ohwada; Kichi-Suke Saito

Open Mathematics (2014)

  • Volume: 12, Issue: 5, page 778-786
  • ISSN: 2391-5455

Abstract

top
In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.

How to cite

top

Hiroki Sano, et al. "Characterization of intermediate values of the triangle inequality II." Open Mathematics 12.5 (2014): 778-786. <http://eudml.org/doc/269713>.

@article{HirokiSano2014,
abstract = {In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.},
author = {Hiroki Sano, Tamotsu Izumida, Ken-Ichi Mitani, Tomoyoshi Ohwada, Kichi-Suke Saito},
journal = {Open Mathematics},
keywords = {Triangle inequalities; Strictly convex Banach spaces; Norm inequality; triangle inequalities; strictly convex Banach spaces; norm inequality},
language = {eng},
number = {5},
pages = {778-786},
title = {Characterization of intermediate values of the triangle inequality II},
url = {http://eudml.org/doc/269713},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Hiroki Sano
AU - Tamotsu Izumida
AU - Ken-Ichi Mitani
AU - Tomoyoshi Ohwada
AU - Kichi-Suke Saito
TI - Characterization of intermediate values of the triangle inequality II
JO - Open Mathematics
PY - 2014
VL - 12
IS - 5
SP - 778
EP - 786
AB - In [Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035] there was established a norm inequality which characterizes all intermediate values of the triangle inequality, i.e. C n that satisfy 0 ≤ C n ≤ Σj=1n ‖x j‖ − ‖Σj=1n x j‖, x 1,...,x n ∈ X. Here we study when this norm inequality attains equality in strictly convex Banach spaces.
LA - eng
KW - Triangle inequalities; Strictly convex Banach spaces; Norm inequality; triangle inequalities; strictly convex Banach spaces; norm inequality
UR - http://eudml.org/doc/269713
ER -

References

top
  1. [1] Abramovich Y.A., Aliprantis C.D., Problems in Operator Theory, Grad. Stud. in Math., 51, American Mathematical Society, Providence, 2002 Zbl1022.47002
  2. [2] Ansari A.H., Moslehian M.S., More on reverse triangle inequality in inner product spaces, Int. J. Math. Math. Sci., 2005, 18, 2883–2893 http://dx.doi.org/10.1155/IJMMS.2005.2883 Zbl1101.46018
  3. [3] Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Characterization of a generalized triangle inequality in normed spaces, Nonlinear Anal., 2012, 75(2), 735–741 http://dx.doi.org/10.1016/j.na.2011.09.004 Zbl1242.46029
  4. [4] Dragomir S.S., Reverses of the triangle inequality in Banach spaces, JIPAM. J. Inequal. Pure Appl. Math., 2005, 6(5), #129 Zbl1093.46014
  5. [5] Dragomir S.S., Generalizations of the Pečarić-Rajić inequality in normed linear spaces, Math. Inequal. Appl., 2009, 12(1), 53–65 Zbl1177.26034
  6. [6] Fujii M., Kato M., Saito K.-S., Tamura T., Sharp mean triangle inequality, Math. Inequal. Appl., 2010, 13(4), 743–752 Zbl1208.46021
  7. [7] Hsu C.-Y., Shaw S.-Y., Wong H.-J., Refinements of generalized triangle inequalities, J. Math. Anal. Appl., 2008, 344(1), 17–31 http://dx.doi.org/10.1016/j.jmaa.2008.01.088 Zbl1145.26007
  8. [8] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 Zbl1121.46019
  9. [9] Maligranda L., Some remarks on the triangle inequality for norms, Banach J. Math. Anal., 2008, 2(2), 31–41 Zbl1147.46020
  10. [10] Martirosyan M.S., Samarchyan S.V., Inversion of the triangle inequality in ℝn, J. Contemp. Math. Anal., 2003, 38(4), 56–61 Zbl1160.51303
  11. [11] Mineno K., Nakamura Y., Ohwada T., Characterization of the intermediate values of the triangle inequality, Math. Inequal. Appl., 2012, 15(4), 1019–1035 Zbl1263.46025
  12. [12] Mitani K.-I., Saito K.-S., On sharp triangle inequalities in Banach spaces II, J. Inequal. Appl., 2010, #323609 
  13. [13] Mitani K.-I., Saito K.-S., Kato M., Tamura T., On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl., 2007, 336(2), 1178–1186 http://dx.doi.org/10.1016/j.jmaa.2007.03.036 Zbl1127.46015
  14. [14] Mizuguchi H., Saito K.-S., Tanaka R., On the calculation of the Dunkl-Williams constant of normed linear spaces, Cent. Eur. J. Math., 2013, 11(7), 1212–1227 http://dx.doi.org/10.2478/s11533-013-0238-4 Zbl1283.46013
  15. [15] Moslehian M.S., Dadipour F., Rajic R., Maric A., A glimpse at the Dunkl-Williams inequality, Banach J. Math. Anal., 2011, 5(2), 138–151 Zbl1225.47022
  16. [16] Ohwada T., On a continuous mapping and sharp triangle inequalities, In: Inequalities and Applications 2010, International Series of Numerical Mathematics, 161, Springer, Basel, 2011, 125–136 
  17. [17] Saito K.-S., Mitani K.-I., On sharp triangle inequalities in Banach spaces and their applications, In: Banach and Function Spaces III, Yokohama Publications, Yokohama, 2011, 295–304 Zbl1294.46012
  18. [18] Saitoh S., Generalizations of the triangle inequality, JIPAM. J. Inequal. Pure Appl. Math., 2003, 43), #62 Zbl1056.46029
  19. [19] Zhang L., Ohwada T., Chō M., Reverses of the triangle inequality in inner product spaces, Math. Inequal. Appl. (in press) Zbl1309.46008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.