Curvature properties of φ-null Osserman Lorentzian S-manifolds
Letizia Brunetti; Angelo Caldarella
Open Mathematics (2014)
- Volume: 12, Issue: 1, page 97-113
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topLetizia Brunetti, and Angelo Caldarella. "Curvature properties of φ-null Osserman Lorentzian S-manifolds." Open Mathematics 12.1 (2014): 97-113. <http://eudml.org/doc/269714>.
@article{LetiziaBrunetti2014,
abstract = {We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use it to obtain an algebraic decomposition for the Riemannian curvature tensor of φ-null Osserman Lorentzian S-manifolds.},
author = {Letizia Brunetti, Angelo Caldarella},
journal = {Open Mathematics},
keywords = {Osserman condition; Jacobi operator; Lorentzian S-manifold; Lorentz manifold; Lorentzian -manifold},
language = {eng},
number = {1},
pages = {97-113},
title = {Curvature properties of φ-null Osserman Lorentzian S-manifolds},
url = {http://eudml.org/doc/269714},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Letizia Brunetti
AU - Angelo Caldarella
TI - Curvature properties of φ-null Osserman Lorentzian S-manifolds
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 97
EP - 113
AB - We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use it to obtain an algebraic decomposition for the Riemannian curvature tensor of φ-null Osserman Lorentzian S-manifolds.
LA - eng
KW - Osserman condition; Jacobi operator; Lorentzian S-manifold; Lorentz manifold; Lorentzian -manifold
UR - http://eudml.org/doc/269714
ER -
References
top- [1] Atindogbe C., Duggal K.L., Pseudo-Jacobi operators and Osserman lightlike hypersurfaces, Kodai Math. J., 2009, 32(1), 91–108 http://dx.doi.org/10.2996/kmj/1238594548 Zbl1173.53013
- [2] Atindogbe C., Ezin J.-P., Tossa J., Pseudoinversion of degenerate metrics, Int. J. Math. Math. Sci., 2003, 55, 3479–3501 http://dx.doi.org/10.1155/S0161171203301309 Zbl1052.53027
- [3] Atindogbe C., Lugiambudila O., Tossa J., Lightlike Osserman submanifolds of semi-Riemannian manifolds, Afr. Mat., 2011, 22(2), 129–151 http://dx.doi.org/10.1007/s13370-011-0015-0 Zbl1268.53063
- [4] Blair D.E., Geometry of manifolds with structural group U(n)×O(s), J. Differential Geometry, 1970, 4, 155–167 Zbl0202.20903
- [5] Blair D.E., Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed., Progr. Math., 203, Birkhäuser, Boston, 2010 http://dx.doi.org/10.1007/978-0-8176-4959-3
- [6] Blair D.E., Ludden G.D., Yano K., Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc., 1973, 181, 175–184 http://dx.doi.org/10.1090/S0002-9947-1973-0319099-4 Zbl0276.53026
- [7] Blažić N., Bokan N., Gilkey P., A note on Osserman Lorentzian manifolds, Bull. London Math. Soc., 1997, 29(2), 227–230 http://dx.doi.org/10.1112/S0024609396002238 Zbl0865.53018
- [8] Blažić N., Bokan N., Rakic Z., A note on the Osserman conjecture and isotropic covariant derivative of curvature, Proc. Amer. Math. Soc., 2000, 128(1), 245–253 http://dx.doi.org/10.1090/S0002-9939-99-05131-X Zbl0932.53042
- [9] Bonome A., Castro R., García-Río E., Hervella L., Vázquez-Lorenzo R., Nonsymmetric Osserman indefinite Kähler manifolds, Proc. Amer. Math. Soc., 1998, 126(9), 2763–2769 http://dx.doi.org/10.1090/S0002-9939-98-04659-0 Zbl0904.53022
- [10] Brunetti L., An Osserman-type condition on g.f.f-manifolds with Lorentz metric, preprint available at http://arxiv.org/abs/1106.6317v2 Zbl1296.53044
- [11] Brunetti L., The η-Einstein condition on indefinite S-manifolds, preprint available at http://arxiv.org/abs/1202.3289 Zbl06297352
- [12] Brunetti L., Caldarella A.V., Principal torus bundles of Lorentzian S-manifolds and the φ-null Osserman condition, Kodai Math. J., 2013, 36(2), 197–208 http://dx.doi.org/10.2996/kmj/1372337513 Zbl1282.53060
- [13] Brunetti L., Pastore A.M., Curvature of a class of indefinite globally framed f-manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 2008, 51(99)(3), 183–204 Zbl1212.53096
- [14] Brunetti L., Pastore A.M., Examples of indefinite globally framed f-structures on compact Lie groups, Publ. Math. Debrecen, 2012, 80(1–2), 215–234 Zbl1265.53037
- [15] Cabrerizo J.L., Fernández L.M., Fernández M., The curvature tensor fields on f-manifolds with complemented frames, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 1990, 36(2), 151–161
- [16] Chi Q.-S., A curvature characterization of certain locally rank-one symmetric space, J. Differential Geom., 1988, 28(2), 187–202 Zbl0654.53053
- [17] Chi Q.-S., Curvature characterization and classification of rank-one symmetric spaces, Pacific J. Math., 1991, 150(1), 31–42 http://dx.doi.org/10.2140/pjm.1991.150.31 Zbl0742.53018
- [18] Chi Q.-S., Quaternionic Kaehler manifolds and a curvature characterization of two-point homogeneous spaces, Illinois J. Math., 1991, 35(3), 408–418 Zbl0724.53032
- [19] Dajczer M., Nomizu K., On sectional curvature of indefinite metrics. II, Math. Ann., 1980, 247(3), 279–282 http://dx.doi.org/10.1007/BF01348960 Zbl0411.53010
- [20] Duggal K.L., Space time manifolds and contact structures, Int. J. Math. Math. Sci., 1990, 13(3), 545–554 http://dx.doi.org/10.1155/S0161171290000783 Zbl0715.53032
- [21] Duggal K.L., Ianus S., Pastore A.M., Maps interchanging f-structures and their harmonicity, Acta Appl. Math., 2001, 67(1), 91–115 http://dx.doi.org/10.1023/A:1010676616509 Zbl1030.53048
- [22] Falcitelli M., Ianus S., Pastore A.M., Riemannian Submersions and Related Topics, World Scientific, River Edge, 2004 http://dx.doi.org/10.1142/9789812562333 Zbl1067.53016
- [23] García-Río E., Kupeli D.N., Four-Dimensional Osserman Lorentzian manifolds, In: New Developments in Differential Geometry, Debrecen, July 26–30, 1994, Math. Appl., 350, Kluwer, Dordrecht, 1996, 201–211 Zbl0856.53021
- [24] García-Río E., Kupeli D.N., Vázquez-Abal M.E., On a problem of Osserman in Lorentzian geometry, Differential Geom. Appl., 1997, 7(1), 85–100 http://dx.doi.org/10.1016/S0926-2245(96)00037-X Zbl0880.53017
- [25] García-Río E., Kupeli D.N., Vázquez-Abal M.E., Vázquez-Lorenzo R., Affine Osserman connections and their Riemann extensions, Differential Geom. Appl., 1999, 11(2), 145–153 http://dx.doi.org/10.1016/S0926-2245(99)00029-7 Zbl0940.53017
- [26] García-Río E., Kupeli D.N., Vázquez-Lorenzo R., Osserman Manifolds in Semi-Riemannian Geometry, Lecture Notes in Math., 1777, Springer, Berlin, 2002 Zbl1005.53040
- [27] García-Río E., Vázquez-Abal M.E., Vázquez-Lorenzo R., Nonsymmetric Osserman pseudo-Riemannian manifolds, Proc. Amer. Math. Soc., 1998, 126(9), 2771–2778 http://dx.doi.org/10.1090/S0002-9939-98-04666-8 Zbl0939.53014
- [28] Gilkey P., Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, River Edge, 2001 http://dx.doi.org/10.1142/9789812799692 Zbl1007.53001
- [29] Gilkey P., Swann A., Vanhecke L., Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford, 1995, 46(3), 299–320 http://dx.doi.org/10.1093/qmath/46.3.299 Zbl0848.53023
- [30] Goldberg S.I., Yano K., On normal globally framed f-manifolds, Tôhoku Math. J., 1970, 22(3), 362–370 http://dx.doi.org/10.2748/tmj/1178242763 Zbl0203.54103
- [31] Goldberg S.I., Yano K., Globally framed f-manifolds, Illinois J. Math., 1971, 15(3), 456–474 Zbl0215.23002
- [32] Kobayashi S., Nomizu K., Foundations of Differential Geometry, I, II, Interscience Tracts in Pure and Applied Mathematics, 15(I,II), Interscience, New York-London, 1963, 1969 Zbl0119.37502
- [33] Nikolayevsky Yu., Osserman manifolds of dimension 8, Manuscripta Math., 2004, 115(1), 31–53 Zbl1065.53034
- [34] Nikolayevsky Yu., Osserman conjecture in dimension n ≠ 8, 16, Math. Ann., 2005, 331(3), 505–522 http://dx.doi.org/10.1007/s00208-004-0580-8
- [35] Nikolayevsky Yu., On Osserman manifolds of dimension 16, In: Contemporary Geometry and Related Topics, Belgrade, June 26–July 2, 2005, Univ. Belgrade Fac. Math., Belgrade, 2006, 379–398
- [36] Nakagawa H., f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian, Kōodai Math. Sem. Rep., 1966, 18(2), 161–183 http://dx.doi.org/10.2996/kmj/1138845194 Zbl0146.17801
- [37] Nakagawa H., On framed f-manifolds, Kōodai Math. Sem. Rep., 1966, 18(4), 293–306 http://dx.doi.org/10.2996/kmj/1138845274
- [38] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York, 1983
- [39] Osserman R., Curvature in the eighties, Amer. Math. Monthly, 1990, 97(8), 731–756 http://dx.doi.org/10.2307/2324577 Zbl0722.53001
- [40] Osserman R., Sarnak P., A new curvature invariant and entropy of geodesic flows, Invent. Math., 1984, 77(3), 455–462 http://dx.doi.org/10.1007/BF01388833 Zbl0536.53048
- [41] Steenrod N., The Topology of Fibre Bundles, Princeton Math. Ser., 14, Princeton University Press, Princeton, 1951 Zbl0054.07103
- [42] Takahashi T., Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J., 1969, 21(2), 271–290 http://dx.doi.org/10.2748/tmj/1178242996 Zbl0187.43601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.