Curvature properties of φ-null Osserman Lorentzian S-manifolds

Letizia Brunetti; Angelo Caldarella

Open Mathematics (2014)

  • Volume: 12, Issue: 1, page 97-113
  • ISSN: 2391-5455

Abstract

top
We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use it to obtain an algebraic decomposition for the Riemannian curvature tensor of φ-null Osserman Lorentzian S-manifolds.

How to cite

top

Letizia Brunetti, and Angelo Caldarella. "Curvature properties of φ-null Osserman Lorentzian S-manifolds." Open Mathematics 12.1 (2014): 97-113. <http://eudml.org/doc/269714>.

@article{LetiziaBrunetti2014,
abstract = {We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use it to obtain an algebraic decomposition for the Riemannian curvature tensor of φ-null Osserman Lorentzian S-manifolds.},
author = {Letizia Brunetti, Angelo Caldarella},
journal = {Open Mathematics},
keywords = {Osserman condition; Jacobi operator; Lorentzian S-manifold; Lorentz manifold; Lorentzian -manifold},
language = {eng},
number = {1},
pages = {97-113},
title = {Curvature properties of φ-null Osserman Lorentzian S-manifolds},
url = {http://eudml.org/doc/269714},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Letizia Brunetti
AU - Angelo Caldarella
TI - Curvature properties of φ-null Osserman Lorentzian S-manifolds
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 97
EP - 113
AB - We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use it to obtain an algebraic decomposition for the Riemannian curvature tensor of φ-null Osserman Lorentzian S-manifolds.
LA - eng
KW - Osserman condition; Jacobi operator; Lorentzian S-manifold; Lorentz manifold; Lorentzian -manifold
UR - http://eudml.org/doc/269714
ER -

References

top
  1. [1] Atindogbe C., Duggal K.L., Pseudo-Jacobi operators and Osserman lightlike hypersurfaces, Kodai Math. J., 2009, 32(1), 91–108 http://dx.doi.org/10.2996/kmj/1238594548 Zbl1173.53013
  2. [2] Atindogbe C., Ezin J.-P., Tossa J., Pseudoinversion of degenerate metrics, Int. J. Math. Math. Sci., 2003, 55, 3479–3501 http://dx.doi.org/10.1155/S0161171203301309 Zbl1052.53027
  3. [3] Atindogbe C., Lugiambudila O., Tossa J., Lightlike Osserman submanifolds of semi-Riemannian manifolds, Afr. Mat., 2011, 22(2), 129–151 http://dx.doi.org/10.1007/s13370-011-0015-0 Zbl1268.53063
  4. [4] Blair D.E., Geometry of manifolds with structural group U(n)×O(s), J. Differential Geometry, 1970, 4, 155–167 Zbl0202.20903
  5. [5] Blair D.E., Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed., Progr. Math., 203, Birkhäuser, Boston, 2010 http://dx.doi.org/10.1007/978-0-8176-4959-3 
  6. [6] Blair D.E., Ludden G.D., Yano K., Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc., 1973, 181, 175–184 http://dx.doi.org/10.1090/S0002-9947-1973-0319099-4 Zbl0276.53026
  7. [7] Blažić N., Bokan N., Gilkey P., A note on Osserman Lorentzian manifolds, Bull. London Math. Soc., 1997, 29(2), 227–230 http://dx.doi.org/10.1112/S0024609396002238 Zbl0865.53018
  8. [8] Blažić N., Bokan N., Rakic Z., A note on the Osserman conjecture and isotropic covariant derivative of curvature, Proc. Amer. Math. Soc., 2000, 128(1), 245–253 http://dx.doi.org/10.1090/S0002-9939-99-05131-X Zbl0932.53042
  9. [9] Bonome A., Castro R., García-Río E., Hervella L., Vázquez-Lorenzo R., Nonsymmetric Osserman indefinite Kähler manifolds, Proc. Amer. Math. Soc., 1998, 126(9), 2763–2769 http://dx.doi.org/10.1090/S0002-9939-98-04659-0 Zbl0904.53022
  10. [10] Brunetti L., An Osserman-type condition on g.f.f-manifolds with Lorentz metric, preprint available at http://arxiv.org/abs/1106.6317v2 Zbl1296.53044
  11. [11] Brunetti L., The η-Einstein condition on indefinite S-manifolds, preprint available at http://arxiv.org/abs/1202.3289 Zbl06297352
  12. [12] Brunetti L., Caldarella A.V., Principal torus bundles of Lorentzian S-manifolds and the φ-null Osserman condition, Kodai Math. J., 2013, 36(2), 197–208 http://dx.doi.org/10.2996/kmj/1372337513 Zbl1282.53060
  13. [13] Brunetti L., Pastore A.M., Curvature of a class of indefinite globally framed f-manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 2008, 51(99)(3), 183–204 Zbl1212.53096
  14. [14] Brunetti L., Pastore A.M., Examples of indefinite globally framed f-structures on compact Lie groups, Publ. Math. Debrecen, 2012, 80(1–2), 215–234 Zbl1265.53037
  15. [15] Cabrerizo J.L., Fernández L.M., Fernández M., The curvature tensor fields on f-manifolds with complemented frames, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 1990, 36(2), 151–161 
  16. [16] Chi Q.-S., A curvature characterization of certain locally rank-one symmetric space, J. Differential Geom., 1988, 28(2), 187–202 Zbl0654.53053
  17. [17] Chi Q.-S., Curvature characterization and classification of rank-one symmetric spaces, Pacific J. Math., 1991, 150(1), 31–42 http://dx.doi.org/10.2140/pjm.1991.150.31 Zbl0742.53018
  18. [18] Chi Q.-S., Quaternionic Kaehler manifolds and a curvature characterization of two-point homogeneous spaces, Illinois J. Math., 1991, 35(3), 408–418 Zbl0724.53032
  19. [19] Dajczer M., Nomizu K., On sectional curvature of indefinite metrics. II, Math. Ann., 1980, 247(3), 279–282 http://dx.doi.org/10.1007/BF01348960 Zbl0411.53010
  20. [20] Duggal K.L., Space time manifolds and contact structures, Int. J. Math. Math. Sci., 1990, 13(3), 545–554 http://dx.doi.org/10.1155/S0161171290000783 Zbl0715.53032
  21. [21] Duggal K.L., Ianus S., Pastore A.M., Maps interchanging f-structures and their harmonicity, Acta Appl. Math., 2001, 67(1), 91–115 http://dx.doi.org/10.1023/A:1010676616509 Zbl1030.53048
  22. [22] Falcitelli M., Ianus S., Pastore A.M., Riemannian Submersions and Related Topics, World Scientific, River Edge, 2004 http://dx.doi.org/10.1142/9789812562333 Zbl1067.53016
  23. [23] García-Río E., Kupeli D.N., Four-Dimensional Osserman Lorentzian manifolds, In: New Developments in Differential Geometry, Debrecen, July 26–30, 1994, Math. Appl., 350, Kluwer, Dordrecht, 1996, 201–211 Zbl0856.53021
  24. [24] García-Río E., Kupeli D.N., Vázquez-Abal M.E., On a problem of Osserman in Lorentzian geometry, Differential Geom. Appl., 1997, 7(1), 85–100 http://dx.doi.org/10.1016/S0926-2245(96)00037-X Zbl0880.53017
  25. [25] García-Río E., Kupeli D.N., Vázquez-Abal M.E., Vázquez-Lorenzo R., Affine Osserman connections and their Riemann extensions, Differential Geom. Appl., 1999, 11(2), 145–153 http://dx.doi.org/10.1016/S0926-2245(99)00029-7 Zbl0940.53017
  26. [26] García-Río E., Kupeli D.N., Vázquez-Lorenzo R., Osserman Manifolds in Semi-Riemannian Geometry, Lecture Notes in Math., 1777, Springer, Berlin, 2002 Zbl1005.53040
  27. [27] García-Río E., Vázquez-Abal M.E., Vázquez-Lorenzo R., Nonsymmetric Osserman pseudo-Riemannian manifolds, Proc. Amer. Math. Soc., 1998, 126(9), 2771–2778 http://dx.doi.org/10.1090/S0002-9939-98-04666-8 Zbl0939.53014
  28. [28] Gilkey P., Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, River Edge, 2001 http://dx.doi.org/10.1142/9789812799692 Zbl1007.53001
  29. [29] Gilkey P., Swann A., Vanhecke L., Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford, 1995, 46(3), 299–320 http://dx.doi.org/10.1093/qmath/46.3.299 Zbl0848.53023
  30. [30] Goldberg S.I., Yano K., On normal globally framed f-manifolds, Tôhoku Math. J., 1970, 22(3), 362–370 http://dx.doi.org/10.2748/tmj/1178242763 Zbl0203.54103
  31. [31] Goldberg S.I., Yano K., Globally framed f-manifolds, Illinois J. Math., 1971, 15(3), 456–474 Zbl0215.23002
  32. [32] Kobayashi S., Nomizu K., Foundations of Differential Geometry, I, II, Interscience Tracts in Pure and Applied Mathematics, 15(I,II), Interscience, New York-London, 1963, 1969 Zbl0119.37502
  33. [33] Nikolayevsky Yu., Osserman manifolds of dimension 8, Manuscripta Math., 2004, 115(1), 31–53 Zbl1065.53034
  34. [34] Nikolayevsky Yu., Osserman conjecture in dimension n ≠ 8, 16, Math. Ann., 2005, 331(3), 505–522 http://dx.doi.org/10.1007/s00208-004-0580-8 
  35. [35] Nikolayevsky Yu., On Osserman manifolds of dimension 16, In: Contemporary Geometry and Related Topics, Belgrade, June 26–July 2, 2005, Univ. Belgrade Fac. Math., Belgrade, 2006, 379–398 
  36. [36] Nakagawa H., f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian, Kōodai Math. Sem. Rep., 1966, 18(2), 161–183 http://dx.doi.org/10.2996/kmj/1138845194 Zbl0146.17801
  37. [37] Nakagawa H., On framed f-manifolds, Kōodai Math. Sem. Rep., 1966, 18(4), 293–306 http://dx.doi.org/10.2996/kmj/1138845274 
  38. [38] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York, 1983 
  39. [39] Osserman R., Curvature in the eighties, Amer. Math. Monthly, 1990, 97(8), 731–756 http://dx.doi.org/10.2307/2324577 Zbl0722.53001
  40. [40] Osserman R., Sarnak P., A new curvature invariant and entropy of geodesic flows, Invent. Math., 1984, 77(3), 455–462 http://dx.doi.org/10.1007/BF01388833 Zbl0536.53048
  41. [41] Steenrod N., The Topology of Fibre Bundles, Princeton Math. Ser., 14, Princeton University Press, Princeton, 1951 Zbl0054.07103
  42. [42] Takahashi T., Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J., 1969, 21(2), 271–290 http://dx.doi.org/10.2748/tmj/1178242996 Zbl0187.43601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.